Escape Analysis in the Jikes RVM

doktor@dyregod.dk — Ulf Holm Nielsen
tnjr@ruc.dk — Thomas Riisbjerg
mads@danquah.dk — Mads Danquah
tkrogh@ruc.dk — Troels Krogh

Supervisor:
jpg@ruc.dk — John Gallagher

27th May 2003

EXIT

Roskilde University
Department of Communication, Journalism and Computer Science
2nd module


mailto:doktor@dyregod.dk
mailto:tnjr@ruc.dk
mailto:mads@danquah.dk
mailto:tkrogh@ruc.dk
mailto:jpg@ruc.dk




Abstract 3

Abstract

This paper describes how escape analysis can be used to determine whether an
object has a lifetime greater than its scope. An escape analysis algorithm is imple-
mented in the Jikes RVM’s optimizing compiler. The results indicate that for some
programs as many as 50% of all allocation sites do not escape the creating method.
Suggestions on how this information can be used to implement stack allocation in
the Jikes RVM are given.



Contents

ADStract . . . . . . e e e

I Introduction
Foreword . . . . . . . . . e e e e e e
Readers Guide . . . . . . . . . . o i e e e

1 Introduction

IT Analysis

2 Introduction to Abstract Interpretation
2.1 The concrete and abstract domains . . . . ... ... .........
2.2 The representation and abstraction functions . ... .........
2.3 Soundnessoftheanalysis . ... ....................
2.4 Interpreting the abstract program . . . . . . .. ... ... .. ....
2.5 Least upper bound of abstractvalues . . ... ... ..........
2.6 Usingtheresults . . ... .. ... ... .. ... . ... ... ...

3 Escape Analysis
3.1 Introduction to Escape Analysis . . . ... ... ... .........
3.2 Escapingamethod .. ... .............. ... ......
3.2.1 Escaping through assignment . . . .. ... ..........
3.2.2 Escapingasaparameter . . . . . . . . . . . vt u 0
3.2.3 Escapingasareturn-value . . . . ... .............
3.3 Escapingathread . . ... ... ... ... .. ... ... .......
3.4 Applying the analysisresults . . . . .. ... ... ... ... ...,
3.4.1 Localvariables . ... ... ... ...... . ... ...
3.42 Returnvalues . . ... .. ... ... ...
3.4.3 Synchronization elimination . . . . ... ... .........

4 Static Single Assignment Form

5 Algorithms for Escape Analysis
51 PreviousWork. . . . . . . . . . . . . e e
5.2 Refinements to Escape Analysis . . . .. ... .............
5.3 Freshness . . . . . . . . . . e
5.4 The AbstractDomain . . . . . . . . . . v v v v v it e e
5.5 Constraints . . . . . . . . . i e e e e e e e e e e e e
56 Results. . . . . . . . . e

6 Introduction to the Jikes RVM

10

12

13
13
14
14
15
15
16

17
17
17
18
18
18
19
19
19
20
21

22

24
24
24
25
25
26
28

29



CONTENTS 5
6.1 The Jikes Research Virtual Machine (RVM) . . . . . . . . .. ... .. 29
6.2 The Compiler Subsystem . . . . .. ... ... ... .......... 30

6.2.1 The Optimizing Compiler . . . ... ... ... ... ..... 30
6.2.2 The Baseline Compiler . . . .. ... ... ........... 31
6.2.3 The Adaptive Optimization System . . . . ... ... ... .. 31
Intermediate Representation of Code 34
7.1 Intermediate Representation . . . . . . . . . ... ... ... ..... 34
7.1.1 Instruction Format . . ... .. ... ... .. ......... 34
7.1.2 StepbyStepexample .. ...... ... ... ... ..., 35
7.2 Construction of the Intermediate Representation . .. ... ... .. 37
7.2.1 Control Flow Graph and BasicBlocks . . . . . .. ... .... 37
7.2.2 Factored Control Flow Graph and Extended Basic Blocks . . . 38
7.2.3 From Bytecode to Intermediate Representation . . . ... .. 39
7.3 Noteworthy Instructions . . . . . .. ... .. ... ... ....... 39
Runtime data-organisation in Jikes 41
8.1 TheObjectModel . . . . . .. ... ... ... . .. . ... ... ... 41
8.2 TheMemoryModel . . . . . . ... ... ... ... 42
82.1 TheStack . ... ... .. .. .. .. 43
822 TheHeap ... .. ... . .. ... 44
8.2.3 HeapAllocation. . . . . . . ... ... 44
8.2.4 ObjectCreation . . . . . . . . . .. v eunn... 45
8.2.5 Heap Deallocation (Garbage Collection) . . ... ... .. .. 46

III Implementation 47

9 Implementation of the escape analysis 48
9.1 Overview of the Implementation . . ... ... ............ 48
9.2 Algorithm Implementation Details . . . . ... ... ... ...... 48

9.2.1 EffectStatements . . . . . . . . . v v v v v i i 49
9.2.2 Modelling Constraints . . . . . . . . . .. ... 49
9.2.3 Inter-Procedural Analysis . . ... ... ............ 49
9.3 FittingitAllIntoJikes . . . . . . . . . . .. .. ... ... ... ... 50

10 Explicit Deallocation of Method-local Objects 51

10.1 Stack Allocation of Method Local Objects . . . . ... ... ...... 51
10.1.1 Allocation of Object in a Object Stack . . . . . . ... ... .. 52
10.2 Implementation . . . . . . . . . v it e e e e e e 53

IV Results 54

11 Analysis Results 55
11.1 Testing the JikesRVM . . . . . . . . . . . i i it i it 55
11.2 Examining the Escape Analysis . . . ... ... ... ......... 55

11.2.1 Assignmentto a StaticField . . . ... ... ... ....... 56
11.2.2 Returning a fresh object . . . . . ... ... ... .. ..... 57
11.2.3 Assignment of an Object to a Non-static Field . ... ... .. 57
11.2.4 Objects Passed as Argument . . . . . . . .. ... ....... 57
11.2.5 Recursive Calls . . . . . . . ... ... . 57
11.2.6 Multiple program paths . . . . . ... ... ... ....... 58



11.3 Examining Real Programs . . . . . . . ... ... ... ... ... 58
11.3.1 VolanoMark . . . . . . . . . . .. 58

11.3.2 Scimark . . . . . . . e 58

V Discussion 59
12 Discussion 60
13 Conclusion 62
14 Related and Future Work 63
VI Lists and Citations 64
15 Credits 65
16 Citations 68
17 Additional Litterature 71
VII Appendix 72
A Source-code for Escape Analysis 73
B Test 80
B.1 assignStatiC . . . . . . . . it e e e e e e e e e e e e e e 81
B.2 fresh . . . . . . . e 82
B.3 assignField ... ... ... ... ... ... ... 83
B.4 method . .. .. . . . . . e 84
B.5 methodCall . .. .. .. . .. . . . . e 85
B.6 TECUTISIVE . . . . v v o o e e e e e e e e e e e e e 86
B.7 recursiveCall . . . . . . . . . . . . e 87
B.8 phi. .. ... e 88
B.O test. . . . . . e e e e e e e e e 89



Part 1

Introduction



Foreword

This paper is part of a 2nd module semester at the Department of Communication,
Journalism and Computer Science at Roskilde University. The report is made by
Ulf Holm Nielsen, Thomas Riisbjerg, Mads Danquah and Troels Krogh.

The report is made with BTgX.
An electronic version is available at: http://www.dyregod.dk/escape/

We would like thank John Gallagher for being a most helpful supervisor and Mads
Rosendahl for giving us an excellent introduction to abstract interpretation, and at
last the people on the Jikes RVM mailing list for their quick replies to our questions.


http://www.dyregod.dk/escape/

Readers Guide 9

Readers Guide

The main topic of this paper is Escape Analysis. The reader is assumed to have
basic knowledge of Computer Science. Particulary language design and program
analysis.

An introduction to the following topics will be given.

— Abstract Interpretation

— Escape Analysis

— Java bytecode

— Memory management in the Jikes RVM

— Java bytecode

— The Intermediate Representation used in the Jikes RVM.
— The object model used in the Jikes RVM

This is given to ease the understanding of the implementation of escape analysis,
and the suggestions on how to use it in the Jikes RVM.

The paper is divided into the following parts.

Introduction: Gives a general introduction to this paper

Analysis: Gives background knowledge needed to understand the implementa-
tion, and the suggestions on how to use it.

Implementation: Presents a Fava-implementation of the escape analysis algorithm
decribed in the Analysis part. Suggestions on how the data from the analysis
could be used in the Jikes RVM are given.

Analysis Results: The implementation is tested and the test-data are analyzed.

Discussion: Test results are discussed together with the suggested use of the anal-
ysis.

Lists and Citations:

Appendix: Source-code and test-results.



Chapter 1

Introduction

Ever since the Java language was introduced in 1995, it has been gaining ground
among developers, even though it has often been criticized for its issues concerning
program execution time. Java Enterprise Edition has nevertheless become the stan-
dard language for developing large enterprise systems in many businesses. Most
universities also now have Java as inevitable part of their curriculum.

There is still room for significant improvements, even though the criticism of Java’s
speed has decreased in recent years as the speed of the virtual machine(VM) has
improved, and the cost of computing power has continued to decline. A lot of effort
have gone into making Java faster, but it still loses out as compared to languages
like C and C++. In 1995 first thought would have been that Java is slow because
it’s interpreted. That argument no longer holds with the latest generations of just-
in-time compilers and hotspot compilers.[SM02].

Many of the restrictions and features in the Java language are also in part to blame
for the slower execution. This is for instance the case for bounds checking of arrays
and garbage collection. In those cases it is necessary for either the compiler or the
interpreter to optimize the code to eliminate as much of the overhead as possible.

In Java there is no way to programmatically control the garbage collector. This
can result in garbage collection at inconvenient places in program execution. This
shows as sudden pauses and increased cpu activity.

A possible way to reduce the garbage collection load is to reduce the amount of
objects allocated on the heap. A C++ programmer can explicitly allocate objects
on the stack and thus not be concerned about deallocating the object explicitly
as it will automagically be deallocated when the current holding stack frame is
popped. As a standard Java VM can only allocate objects on the heap, this is not
an option for a Java programmer. Nor would this be desired as it would complicate
the language and thus sacrificing the ease of use which was intended.

If Java could be made to automatically allocate some objects on the stack, it could
reduce the number of objects needed to be handled by the garbage collector and
then possibly reduce the negative effects of Javas garbage collection. This has been
done with success in Marmot[FKR100].

A way to identify objects suitable for allocation on the stack is by using escape anal-
ysis. Escape analysis identifies those objects that escapes the scope of the method
they are allocated in.

10



11

The purpose of this paper is to study the feasibility of allocating objects on the
stack in the Jikes RVM. This is done by implementing an escape analysis algorithm
based on abstract interpretation in the Jikes RVM’s optimizing compiler. The Jikes
RVM already does escape analysis on its objects, but the extracted information is
only used to determine wether an object is thread-local. An overview of the steps
necessary to implement stack allocation in the Jikes RVM will be given.



Part 11

Analysis

12



Chapter 2

Introduction to Abstract
Interpretation

In this chapter the basic concepts of abstract interpretation are presented. This the-
oretical knowledge is necessary since the escape analysis algorithm implemented
in this project is based on abstract interpretation.

Abstract interpretation is a framework for extracting various forms of information
from a program by attempting to predict its behavior. This is done by transforming
the program to use abstract values instead of the so-called concrete values it nor-
mally operates on, while preserving the semantics of the program. The abstract
domain is highly dependent on the information one wishes to extract from the
program. [Ros95]

As an example, constant-propagation will be shown within the abstract interpre-
tation framework. A small, contrived program will be used as the basis for the
analysis, shown in listing 2.1. Various aspects of abstract interpretation will be
explained along the way as they are used.

The hypothetical pseudo-language follows a C-like syntax and operates on integer
values for variables only. Constant Propagation analyses uses the set of possible
values for each variable in the program, and identifies which variables can be re-
placed by constants.

2.1 The concrete and abstract domains

The first task is to define concrete and abstract domains for the interpretation.
The concrete domain is defined as the set of all natural numbers, Z (ignoring that
computers can only represent a limited set of numbers). The abstract domain A is
defined as the set of all possible values for every variable in the program, in this
case, Z again. For variables that are assigned more than one value, the element T
is also included in the abstract domain, to represent “any value”. Likewise, | will
represent undefined values.

It is important to differentiate among the concrete values and the abstract values,
even though they both belong to Z (except T and L, which only belong to A). The
abstract values represent sets of concrete values. The abstract domain is partially

13



14

ordered, and is thus structured as a lattice, shown in figure 2.1. T has a higher
value than the numeric values, which in turn have higher values than the undefined
element, .

Figure 2.1: The abstract domain

2.2 The representation and abstraction functions

The representation function v maps elements from the abstract domain onto sets
in the concrete domain. In this example, v maps elements from A to P(Z). Thus, T
represents all (any) numbers, a specific number represents itself, and | represents
an uninitialised value (nothing.)

v:A—P2)
(T)=2
Y({x}) = {x}
Y(l)=2

Likewise, there exists an abstraction function « that maps sets of concrete elements
onto the abstract domain. Given a set containing a single concrete value, « returns
an abstract value representing the concrete value. If the variable may contain
several values, « returns T, representing any number in Z.

a:PZ)—A
al{x,y,..})=T
a({x}) = x

2.3 Soundness of the analysis

The abstraction is sound since it correctly determines variables that are only as-
signed one value. Any variables that might possibly be assigned more than one
value are marked as such and aren’t transformed in the analysis. Thus the analysis
only modifies the program when it is certain that the modification is safe.

The relationship between « and « can be expressed in that for a given statement
x, the set of concrete values represented by x is contained in the concrete values
represented by the abstraction of x. That is, x C «(«(x)). The only unsafe operation
in constant propagation would be to mark a true variable (one that assumes many
values) as a constant, replacing it with it’s value. However, this is prevented since
the set of values represented by that variable is not contained in the singleton set
of the constant.

See [Ros95] for a more formal proof of the correctness of abstract interpretation.



2.4 Interpreting the abstract program 15

Listing 2.1: Program before analysis

1| main()

2| {

3 a = 4;

4 b=2*%*a;

5 c = 20;

6 c = 3

7 d=a+b + ¢
s}

2.4 Interpreting the abstract program

Given an abstract state e.g. a variable with the abstract value {4} it is possible to
define a function to evaluate a given expression in the abstract domain.

The abstract representation of the expression a = b is the abstracted operation
a ~ b. When applied to the abstract state t = (a : {4},b : {3}), it will be updated
to (a : {3,4},b : {3}). Each concrete expression has a corresponding abstract
expression resulting in an abstract value instead of a contrete value.

In interpreting the program in listing 2.1, the variable a is encountered on line
3. It is assigned the abstract value {4}, because a is assigned the literal value 4.
On line 4, b is assigned to the literal value 2 multiplied by the value of a. At the
current point in the analysis, a is known to hold the constant value {4}. It might
seem obvious to the reader that b will be assigned the constant value {8}, however
a may be reassigned at a later point in the program, and thus no longer hold a
constant value.

Thus, only simple literal assignments will be considered as potential constants in
this example, so whenever an expression is encountered, the receiving variable is
set to the “any value” element T regardless of whether the statement only contains
constants or not.

2.5 Least upper bound of abstract values

An upper bound of two elements x and y is z, such that x < z and y < z. The least
upper bound z is the the upper bound z < 2’ for any other upper bound 2’ of x and

Y.

Line 5 in listing 2.1 assigns the abstract value {20} to c, updating the state to
(a:{4},b: T,c:{3,20},d: L). However, line 6 adds 6 to the abstract value of c,
making it {6,20}. When the representation function ~ is passed an abstract value
consisting of a set of more than one value, v performs the least upper bound op-
eration on each element of the state before mapping back to the concrete domain.
Applying the least upper bound to the state (a : {4},b: T,c: {3,20},d : L) results
in the state (a: {4},b: T,c: T,d: 1).



16

2.6 Using the results

When a variable has successfully been determined to be a constant, all that remains
is to transform the program accordingly. The resulting program is shown in listing
2.2, in which the variable a has been replaced by the literal value 4.

Listing 2.2: Program after analysis with some variables replaced by constants

1| main()

2| {

3 b=2*4

4 c = 20;

5 c =3

6 d=4+b + ¢
71}




Chapter 3

Escape Analysis

This chapter introduces escape analysis. It contains the foundation necessary to
understand the escape analysis described in chapter 5. First of a description of
how objects can escape a method is given. This will then be illustrated in the last
two examples

3.1 Introduction to Escape Analysis

Escape analysis attempts to identify those objects whose lifetimes exceed the scope
in which they are created. Such objects are said to escape their scope. Broadly
speaking, objects may escape their scope via assignments to non-local variables, by
being passed as parameters to methods, or by being returned by a method. The
details of how and when objects can escape from methods will be explained in sec-
tion 3.2. The analysis also attempts to identify those objects that are only accessed
by the thread in which they were created. Objects accessible from other threads
than their creator are said to have escaped their thread. This will be explained in
section 3.3.

Knowing that an object escapes or is returned from its scope or thread can lead
to a number of optimizations; mainly in memory management and thread-lock
elimination, as is the subject of this paper. [Rin] lists other uses for escape analysis,
such as eliminating array bounds checks.

3.2 Escaping a method

The life-time of an object always starts with a statement similar to SomeClass t
= new SomeClass() in which the variable t is assigned the reference to a new
object. At that very point, t is the only reference to the object. The object can
only escape the method in which it was created if another variable is assigned the
value of t , a method is invoked with t as a parameter, or if t is returned from the
method. Objects that cannot escape are not accessible from outside the method in
which they were created. Such objects are also called local objects.

17



18

3.2.1 Escaping through assignment

An object escapes its method if it is assigned to a variable with a greater life-time
than the method in which the object was defined. Such a variable could be the
field of an object that escapes the method, or a static field in a class. Simple x =
y assignments don’t directly affect the escapement of an object, but it is important
to propagate any escape- and return-information for a given variable backwards
through its defining statements to the new statement that created the object. An
object escapes if it is assigned to a field belonging to this , since the lifetime of
this always exceeds the lifetime of any instance methods.

As shown in listing 3.1, the reference b escapes the method by being assigned to
the static field s in the Cclass. Since b is defined as a copy of the a reference, a
must also escape. Thus it is known that the object created on line 1 will escape the
method.

Listing 3.1: Escaping though a static field

1| C a = new C();
2| C b = a;
3| C.s = b;

3.2.2 Escaping as a parameter

An object may escape its defining method m; if it is passed as a parameter to
another method ms. my is analyzed, and if the given parameter is found to escape
in my, then the object also escapes m;. Listing 3.2 shows the variables a and b
being passed to the foo method. Inside foo , the formal argument x escapes into
the static field s in C but argument y does not escape. Therefore, the variable a
escapes though foo and b does not.

Listing 3.2: Escaping though a parameter

1| C a = new C();

2| C b = new C();

3| foo( a, b );

4

s| void foo( C x, Cy) {Cs =x yf-= null ; }

3.2.3 Escaping as a return-value

Finally, the most obvious way for a an object to escape it’s defining method is to
be returned from the method. In listing 3.3, a escapes bar though the return
statement.

It is possible to “catch” objects returned by a method by treating the method as a
new statement. foo has access to the object created in bar . However, the returned
object does not escape from foo . Some of the resulting analyses take advantage of
this [GS00].



3.3 Escaping a thread 19

Listing 3.3: Escaping though a return statement

=

void foo() { C x = bar(); return ; }
Cbar) {Ca= new C(; retun a;}

»

3.3 Escaping a thread

An object cannot escape to another thread if it does not escape its defining method.
In fact, there are only two ways an object can escape to another thread: being as-
signed to a static field in a class, and being assigned to another object that escapes
the thread. If an object is only accessible to a single thread, there is no reason to
synchronize access to the object.

3.4 Applying the analysis results

Once the escape analysis is complete, a number of objects will be known not to
escape their methods. This section describes those optimizations which are the
subject of this paper. For other uses of escape analysis, see [Rin].

Listing 3.4: Unanalysed program

1|Ca(Cx Cvy){
2 Ct= new C( xf + y.f);
3 return  t; }

4

s| C m() {

6 C x = new C();
7 C y = new C();
8 C z = new C();
9 Cp=a(xy)
10 Cg=a(p, z)
1 return  q; }

3.4.1 Local variables

Once an object o is known not to escape a method m, the allocation of the o can be
moved from the heap to m’s stack frame.

In Java, objects are normally allocated on the heap and deallocated by a garbage
collector. Allocating storage on the stack is cheaper than allocating on the heap:
a stack frame is going to be created for m anyway; there is no need to find a slot
of unallocated memory on the heap large enough to hold the object; and most
importantly there is no need for the garbage collector to consider objects on the
stack, since they will be deallocated automatically once the method terminates.

The new keyword in Java is responsible for allocating storage for the object on the
heap as well as calling the object’s constructor. When compiled to bytecode, the



20

new keyword from Java is substituted by a new instruction that allocates storage
for the object on the heap, as well as calls the object’s constructor to initialize the
object after allocation. The keyword newStack is introduced to Java. newStack
operates just like new, only it allocates the object on the stack instead of the heap,
before calling the constructor. In practice such a keyword would be introduced on
a lower level than Java, either bytecode or some intermediate form internal to the
compiler.

In listing 3.4, the method mcreates three instances of the C class, referenced by x,
y and z. An analysis of the method a will show that its parameters do not escape,
therefore neither of the references X, y or z escape from mand are suitable for stack
allocation. In listing 3.5 the new keyword has been substituted by newStack as a
result of the analysis.

3.4.2 Return values

When a method mg calls a method m; that returns a new object, it is possible
to allocate m;’s return-value on my’s stack frame, if the returned object does not
escape mg. A copy of my, m), is created which does not allocate a new object.
Instead, m} accepts an additional parameter: a reference r to the object allocated
on my’s stack, which is initialized by the constructor.

In listing 3.4 the method a returns a new C object, and is marked as such during
the analysis. When analysing the mmethod, the method a will be known to return
a new object, and the variables p and q will be treated as references to new objects
created by new statements. Since p does not escape from m it can be allocated on
nis stack. In listing 3.5, a copy of the a method, a2, is created and made to accept a
reference r to the object created in m a2 does not allocate a new object, it merely
calls the C constructor to initialize the area pointed to by the reference r , denoted
by r.C() . The call to a on line 9 of the original program is substituted with a call
to a2 in the transformed program in listing 3.5.

Listing 3.5: Result of analysis

Ca(Cx Cy){
Ct= new C( xf + yf);
return  t; }

void a2( C x, Cy, Cr){rC(xf+yf)}

= newStack C();
= newStack C();
= newStack C();
= newStack C();
X, ¥, 1)

=a(p z)

a; }

VO ® N U AW N

20000

HH
>
ac O
c
€ o
>




3.4 Applying the analysis results 21

3.4.3 Synchronization elimination

Given a class C with a synchronized method my, if an object o of class C does not
escape its thread, the synchronization can be removed. This is done by substituting
any occurrences of m; with m, a copy of m; without the synchronization. [WR99]



Chapter 4

Static Single Assignment Form

The escape analysis examined in this paper requires that the code to which it is
applied is in Static Single Assignment (SSA) form. Therefore a short introduction
to this form of optimization will be presented.

A program written in an imperative language may have several assignment state-
ments, where each variable may be assign different values any number of times.
An example in shown in listing 4.1.

Listing 4.1: Regular assignments

1y = 4

20X =1+,
30z =Yy + X
4| X = 2 + z
508 =1 +y,

This form of assignment is impractical when performing certain analyses on the
code such as dead code elimination and common subexpression elimination. How-
ever if the code is put on SSA form these optimizations can easily be applied. SSA
form implies that each local variable can only be assigned a value once. Every time
a value is assigned to a variable x a clone of x is created. Figure 4.1 shows the how
a “straight-line code” block can be transformed into SSA form.

y:=4 Yo:=4

Xi=1+y Xp:=1+Y¥o
Z:=y+X —» | Z20=YotXo
Xi=y+z Xpi=2+12¢
si=1+y Sp=1+Yo

Figure 4.1: SSA tranformation

SSA form introduces the ¢ function. This function is introduced at points where
the flow of control meets. It handles the assignment of variables after branches
and loops. An example of an if-then-else is given in listing 4.2. Here the X can
be assigned two different values, which keeps us from determining which of the
x values should be assigned to z after the conditional statement is exited. This
problem becomes obvious in listing 4.3 where the conditional branch is in SSA
form.

22



23

Listing 4.2: Conditional branch

[S1 I ISR SR
©
wn
(¢

Listing 4.3: Conditional branch in SSA form

(51 I R C R
@
wn
(¢}

Figure 4.2 shows the control flow graph of listing 4.2. The control flow graph on
the left hand side of the figure shows how the statement branches and the control
flow merges again. In the case on the left hand side it is not possible to determine
what value z will assumed.

true false true false

s ] D] | —p (5] [

ES

Z=X X3 =0 (Xp,Xp)
20 = Xg

Figure 4.2: A control flow graph transform into SSA form

On the right hand side however the ¢ has been introduced and the control flow
graph is now in SSA form. The ¢ will determine which of the branches where
taken in the conditional statement.

For a more thourough explanation of SSA see [CFR*91].



Chapter 5

Algorithms for Escape Analysis

Chapter 3 in conjunction with chapter 2 provides the necessary knowledge to un-
derstand the escape analysis algorithm being implemented. The chapter describes a
relative simple, but effective escape analysis algorithm, which will be implemented
in Java. The algorithm in this chapter adds further constraints to the escape analy-
sis explained earlier. It also introduced the concepts of properties for the methods
ad variables.

5.1 Previous Work

[CGST99] and [WR99] have both implemented escape analysis with the purpose
of stack-allocating objects in Java. Both use variations of connection graphs as ab-
stractions, that is a graph representing objects as nodes and references between
them as edges. Each statement in the program updates the connection graph. A
given object o is determined to escape if it is reachable from another object o’ in
the connection graph, and o’ is known to escape. Furthermore, the implementation
presented by [WR99] is capable of analyzing only parts of the program, incremen-
tally refining the analysis as more methods are analyzed.

[GS00] presents a faster and simpler algorithm based on abstract program inter-
pretation, which is the basis for the algorithm used in this paper. It assumes that
the program has been transformed into SSA form (see chapter 4) as well as split
up in Basic Blocks in a Control Flow Graph see section 7.2.1). Additionally, the
algorithm does not detect objects that escape their methods but don’t escape their
threads.

5.2 Refinements to Escape Analysis

The algorithm from [GS00] imposes some additional limitations to the escape anal-
ysis presented earlier, specifically the algorithm doesn’t consider arrays and places
greater restrictions on assignments. Arrays are not considered for stack-allocation
because their size often cannot be determined at compile-time. Furthermore, vari-
ables occurring on the left hand side of assignments inside loops are not considered

24



5.3 Freshness 25

for stack-allocation because it is often not possible to determine the number of it-
erations of a loop at compile-time, potentially resulting in an infinite number of
objects to be allocated on the stack.

5.3 Freshness

A local variable is defined as fresh if and only if its defining statement is a new
statement or a call to a fresh method. A method is fresh if it returns a fresh variable.
Listing 5.1 shows a few examples of statements and their resulting freshness. a is
directly assigned a reference to a new instance of the class C, therefore a is a fresh
variable. b is assigned a copy of the value of a, thus also referencing the fresh
object created in line 1. However, since the defining statement for b is neither
a new statement or a call to a fresh method, b is not fresh. In practice this is
not an issue, as most of such assignments will have been stripped by previous
optimizations in the compiler pipeline. On line 3, ¢ is assigned a value from the
static field C.s, which cannot possibly be fresh. Line 4 is more interesting; d is
assigned the return value from the q method. Since q is a fresh method, as will
be shown in the following, d must be a fresh variable. The p method returns x,
which is a fresh variable analogous to line 1. Since a fresh method is defined as
a method that returns a fresh variable, p must be a fresh method. Likewise, g
returns the fresh variable returned from p, making q a fresh method as well. The
final method, r, is not fresh, since it returns a static field in C.

Listing 5.1: Freshness of variables and methods

1| C a = new C(); fresh

2| C b = a; not fresh

3| C ¢c = C.s; not fresh

4| Cd = q(); fresh

s|Cp) { Cx= new C(); return x; } fresh
6|l Cqg)) { C x = p(); return  x; } fresh

71 Cr() { return Cs;} not fresh

5.4 The Abstract Domain

The abstract domain consists of tuples of four properties for each reference appear-
ing in the program and tuples of two properties for each method.

(fresh, escape, return, loop)

The variable properties are fresh, escape, return and loop. The fresh property is
an element of the lattice 7, and determines if the variable represents a newly in-
stantiated object. The lattice 7 is defined as a flat lattice consisting of the com-
plete set of Java reference types C bounded by the T and L elements, such that
Vce C: L <c<T. L represents an undefined variable, T represents a non-fresh
variable, and any value contained in C represents a fresh value of the given type.
The lattice is shown below in figure 5.1.

The escape property for a variable is an element from the binary lattice {T, L} and
determines if the object referenced by the variable escapes the current method.



26

T

/\

String ~ Vector  Object

1

Figure 5.1: The lattice 7 representing freshness

Likewise, the return property determines if the variable is used as a return value.
Finally, the loop property determines if an assignment to the variable occurs inside
a loop.

The method properties consist of a fresh property defined as an element in 7, anal-
ogous to the variable freshness; as well as a tuple of n values, representing the
parameters accepted by the method.

{fresh, (po,p1,---, Pi))

When analyzing a given method, if formal parameter i escapes, is returned or ap-
pears in a loop, the ith element in the tuple is updated to reflect this. The tuple
fills the same role as the phantom-nodes in [CGST99] in connecting arguments
passed to methods with the formal parameters used inside a method, for use in
inter-procedural analysis.

5.5 Constraints

Updating the abstract state is done via abstract interpretation of each abstract effect
statement. Each type of statement adds constrains between the properties of the
operands, shown below.

return , v:

T < returned(v)

fresh(v) < fresh(m)
escaped(v) = T < fresh(m)

return statements dictate that the returned property of the v operand must be at
least T. The method m must be at least as fresh as the return value v, keeping
in mind that T is a greater value than the reference types used to represent fresh
variables. Therefore, if v is non-fresh (T) then m must be non-fresh as well. Finally,
if the variable v escapes m, then v must not be fresh, as freshness is a requirement
for identifying stack-allocable objects.

throw v:
T < escaped(v)

throw statements dictate that the object thrown - v - must escape, thus escaped
property for v must be at least T.

V= Newc:



5.5 Constraints 27

¢ < fresh(v)

The result of a new statement is defined as being fresh, thus when instantiating an
object of type c, the fresh property for v must at least c.

Cs=v:
T < escaped(v)

Assigning the reference v to a static field s in an arbitrary class dictates that the
object pointed to by v must escape.

v=C.s:
T < fresh(v)

The object pointed to by a static field cannot possibly be fresh, therefore the fresh
property of v must be at least T.

vo.f = Vit
T < escaped(vy)

Assigning a reference v; to the field of an object forces the object pointed to by
vy to escape. This is a consequence of not being able to discern assignments to
this.f ~ when the program is in bytecode-form; if thought of as a variable, this
always escapes an instance method. Therefore escaped must be at least T.

Vo = Vit
escaped(vy) < escaped(vy)
returned(vy) < returned(vy)
loop(vp) < loop(v1)

T < fresh(vo)

When copying a reference to an object, it is important to be able to propagate
any changes to the copy (vy) back to the original reference (v;), such that any
constrains added to the copy also affect the original. Therefore, whenever the
escaped, returned, and loop properties for vy are updated, the values for v; must be
equal to or greater than the same values for vo. This ensures that changes to v, are
propagated to v;.

Vo cannot be fresh since the defining statement for v is clearly neither a new state-
ment or a call to a fresh method. Any copy statement constrains the copy to being
non-fresh.

Vo = vi.f:

T < fresh(v)
As with the simple vy = v, assignment, the copy of the reference must not be fresh.
Vo = o(V1,Va,y .oy Vn):

T < fresh(vy)

Vie [l.n];

escaped(vy) < escaped(v;)



28

returned(vy) < returned(v;)
T < loop(v;)

As mentioned earlier, the algorithm assumes that the code is in SSA form. There-
fore the analyzed program will contain the equivalent of ¢-functions, to merge
multiple control paths in the flow graph. If any of the parameters to the ¢ function
escape or are returned from their scope, the result of the ¢ function must also es-
cape or be returned. The loop parameter for the result is set to T because there is
no way do discern if the ¢ function is the result of a loop or a simple branch in the
program.

vo =vi.m(ve,...,vn):
Vie[2.n]:

Vg € methods — invoked(vy,m) :
letf = formal — var(g,i),c = returned(f)in
escaped(vy) <. escaped(v;)
returned(vy) < returned(v;)
loop(vy) < loop(v;)
escaped(f) < escaped(v;)
fresh(g) < fresh(vo)

If a formal parameter i is returned from m, v; is constrained to vy, effectively acting
as a vg = v; assignment. Furthermore, if a formal parameter i escapes m, then the
variable passed as v; must also escape.

5.6 Results

A local object is suitable for stack-allocation if it is fresh, doesn’t escape, isn’t re-
turned and doesn’t appear in a loop. The return value from a method m is stack-
allocable if m is fresh. The parameter p; escapes though a method if



Chapter 6

Introduction to the Jikes RVM

In this chapter an overview of Jikes RVM is introduced. The two compilers and the
main compiler system is presented. This is explained in order to provide an insight
into how the Jikes RVM works and where the optimization in form of escape anal-
ysis may be applied. Also this chapter gives a short introduction to some general
aspects of the Jikes RVM.

6.1 The Jikes Research Virtual Machine (RVM)

The Jikes RVM is an open source Java virtual machine (JVM) based on the Jalapefio
project[dev03a][dev0O3b]. The Jalopefio project was a research project initiated by
IBM. In October of 2001 IBM released the source code as open source, and re-
named the project to Jikes RVM. The Jikes RVM is meant as a testbed for new
Virtual Machine (VM) technologies, and is capable of running most Java applica-
tions. In order to maintain its position as an open source VM, it has to utilize open
source class libraries, more specifically the libraries developed in the GNU class-
path project[Cla03]. Since these libraries are not completely compatible with the
ones in Suns JDK 1.4, the Jikes RVM cannot run all Java-applications.

The Jikes RVM takes a new approach regarding compiling code. Instead of provid-
ing both a Java interpreter and a Just-In-Time compiler, Jikes RVM compiles every
line of bytecode into native code and then invokes the code. This makes it easy to
mix code from the different compilers in Jikes[BCFT99].

One of the interesting features of the Jikes RVM is that it’s almost completely im-
plemented in Java. Apart from about 1000 lines of C code, which facilitate access
to the operating system resources[AABT00], the rest is written in Java . But even
though it is implemented in Java, it does not need a second JVM (host JVM) to
enable it to run. It does however need a host JVM in order to bootstrap itself.
The bootstrapping process makes the core elements of the RVM, such as the class
loader, the object allocator, a compiler among others, available in a boot-image.
The host JVM is needed to kickstart the bootstrapping process by running the Java
program that compiles the core elements of the JVM into native code. Before this
happens, the core elements have to be compiled into bytecode since the compilers
in the Jikes RVM only compile bytecode. The compiled elements are then stored in
the boot-image.

29



30

The Jikes RVM consists of four different subsystems.

— The runtime subsystem

— The thread and synchronization subsystem
— The memory-management subsystem

— The compiler subsystem

In this paper we are primarily concerned with the compiler subsystem and the
memory-management subsystem, since these are relevant in the implementation
of stack allocation. Escape analysis can also be used to optimize the thread and
synchronization subsystem, but since this has already been implemented in Jikes
RVM, it will not be discussed further in this text.

6.2 The Compiler Subsystem

Basically this system consists of two compilers and the Adaptive Optimization Sys-
tem (AOS). The two compilers are the baseline compiler and the optimizing com-
piler. If the AOS is enabled the code will be optimized, while it is running. Each
method may be compiled several times, at different levels of optimization. Without
the AOS each method is compiled once, using the specified compiler.

6.2.1 The Optimizing Compiler

The optimizing compiler is by far the most interesting compiler in the Jikes RVM.
It yields highly optimized code, but the compilation process is also slower. It works
by translating bytecode into an Intermediate Representation(IR) (see section 7),
upon which it can perform various forms of optimizations.

The optimizations done by the optimizing compiler can be divided into three groups:
local, global and inter-procedural. Local optimizations are optimizations inside a
single extended basic block (see section 7). Global optimizations are done on a
method level, spanning several basic blocks. Inter-procedural Optimizations are
done across several methods.

Optimizations that fall under the local category are local common-subexpression
elimination and local constant propagation. Both are flow sensitive analysis and
therefore benefit from having the control flow graph given (see 7.2).

Global optimizations include live variable analysis and a range of optimizations
done on IR in SSA form. Among them are global common subexpression elimi-
nation, redundant load elemination, redundant branch elimination, global value
numbering and simple escape analysis to avoid synchronization penalties if a vari-
able does not escape the current thread.

Inlining of methods and method specialization are done as part of the inter-procedural
analysis.

The Jikes RVM divides these optimization into three different levels of optimiza-
tions labelled O0, O1and O2. If the optimizing compiler is used outside of the AOS
the user can specify which level of optimization to use, otherwise the AOS will
decide which of the optimization levels to apply.



6.2 The Compiler Subsystem 31

6.2.2 The Baseline Compiler

The baseline compiler is a very fast compiler, that produces unoptimized code. In
contrast to the optimizing compiler the baseline compiler does not generate an
intermediate representation of the Java code. Instead it translates the Java code
directly into native code, by simulating the operand stack in Java[LY99]. The result
is a speedy compilation, which generates poorly performing code. The compiler
was primarily used during the development of Jikes RVM[AABT00], but is still an
active part in the Jikes RVM.

6.2.3 The Adaptive Optimization System

The AOS is comprised of the following three components.

— The runtime measurement system
— The controller
— The recompilation system

In addition to these components the system contains a database, which holds in-
formation from all the components. The database creates static objects, that hold
information on the sampled data.

Figure 6.1 shows an overview of the AOS.

Executing code

%,
I_:::::::::::_ :::__.::::::::: _____________ d}é ___________________________
Runtime //O
measurement system &
Method v [1/00 Compiler
Sample % P

1

1

1

1

|

1

! Instrymented/
| Optimixed codg
1

1

1

1

1

1

1

1

1

Method
Organizer

Compilation Thread
Database 'y

A

Compilation Queue

Controller

=

8

=
Oj
=

(¢}

[=1

[¢]

Y

Figure 6.1: Crude overview of the adaptive optimization system

When the Jikes RVM is booted a call is made to the boot method in VM Controller
This method takes care of initializing the AOS. The boot method starts by checking
for command parameters and then moves on to initializing the rest of the compo-
nents and the database.

Instrumentation/
compilation plan

-



32

The Runtime Measurement System

As mentioned the AOS optimizes the code while it is running. In order to determine
whether a piece of code should be optimized or not , information about the running
code is needed. This is provided by the Runtime Measurement System (RMS). This
system monitors the code as it executes and gathers information from hardware
and software monitors. Information such as method invocation counters and call-
graph edge counters are fed into organizer-threads. The organizer threads analyze
the data from the monitors and pass the results on the controller. The method
invocation counter keeps track of the number of times a method has been invoked,
while the call-graph edge counter keeps track of the number of times a method
has been called from a given method. The former information can be used by the
controller in deciding if a method should be recompiled with a higher optimization
level. The latter aids in deciding whether or not a method should be inlined.

The Controller

The controller retrieves information from the RMS and/or the database. Based on
this information the controller decides how the system should react. If it decides
no action is to be taken, it tells the RMS to keep analysing data from the running
program. Alternatively it can choose to recompile certain methods to improve the
performance of the application. If the controller decides to recompile a method, it
is added to a queue of methods waiting to be completed.

The controller bases it decisions to recompile on a cost/benefit analysis. It calcu-
lates the future running time (Tf) of the program, simply by looking at the current
running time of the program. So if the program has been running for 5 minutes,
then Ty will be equal to 5[AFG*00]. It also calculates the percentage of time the
program will spend in a method (P,,), by looking at the sample data. From these
two numbers, the time spent in a method in the future is calculated (T}).

T; = Ty * Ppy

The controller then has to predict if the method will perform better if recompiled.
This can be done by using the following equation.

Tj = T; % Si/S;

The above equation yields the future expected time spent in a method, where S;/S;
represents the speedup ratio between the current level “i” and the new optimization

level “j”. These constants are based on offline reference measurements, taken by
the Jikes RVM development team.

In order to finish the analysis, the compilation time cost (C;) is added to T;. C; is a
constant based on the size of the method. If T; 4 C; < T; the method will be placed
on the compilation queue.

Along with every method the controller outputs a compilation plan containing an
optimization plan, profiling data and an instrumentation plan. The optimization
plan tells the compiler which optimizations to apply to the method. The profiling
data is the data collected by the RMS. This data is used when the compiler performs
adaptive inlining. The instrumentation plan is used to insert further monitoring
code into the method.



6.2 The Compiler Subsystem 33

The Recompilation System

When elements are placed in the compilation queue the recompilation system will
be invoked. The requested method will be recompiled in a compilation thread,
which means that the application and recompilation can run simultaneously.

The new code generated from the compilation process is then inserted into the
program. This monitoring and recompilation is an ongoing process that continues
throughout the lifespan of the program.[AFG*00].



Chapter 7

Intermediate Representation of
Code

This chapter will introduce the three kinds of intermediate code levels that the Jikes
RVM uses. The focus will be on on the HIR, since the escape analysis is applied to
this level of code. The HIR resembles bytecode but several optimization can be
applied to it, among others the SSA form.

How they are represented, constructed and what optimizations are done on the
code as it progresses through the three levels.

7.1 Intermediate Representation

The Jikes RVM’s optimizing compiler operates with three levels of intermediate
representation of code (IR): HIR (High level Intermediate Representation), LIR
(Low level Intermediate Representation) and MIR (Machine specific Intermediate
Representation).

The IR is register based as opposed to Java bytecode which is stack based. All
three levels of IR has an unlimited number of symbolic registers available. IR
code is register based because a register based form provides greater flexibility in
code transformation and is closer to the target architecture and therefore enables
optimizations for these architectures[AAB*00].

7.1.1 Instruction Format

IR instructions consist of an operator and zero or more operands. The operator
represents the instruction to execute and the operands can represent registers (both
symbolic and physical), memory locations, types, labels, guards etc. This is true
for all three levels of IR.

Listing 7.1: A single statement in HIR

1] 2 EG new t9si(Ljava/lang/Object;,p) = java.
lang.Object

34



7.1 Intermediate Representation 35

The first field on each line of IR code is the index in the class file that corresponds
to this line. The statement in listing 7.1 corresponds to index 2 in the class file.
It is followed by a field that can be either empty, a label or an indication if this
line can produce an exception (E) or yield to the garbage collector (G). An object
allocation via the new instruction may both cause an exception and yield to the
garbage collector.

If the current line is a label, the next field contains a frequency indicator used to
predict control flow. Otherwise the field contains the operands.

References in IR are always preceded by a type identifier. The following list is all
indentifiers used and their meaning.

B - byte

C - char

F - float

| -int

L - long

L<classname>; - reference to classname
S - short

Z - boolean

[ - reference to array dimension

The Jikes RVM uses several kinds of registers. These are indentified by a sequence
of letters and numbers. 10i denotes the local register O of type i (integer). The
first letter can be | ort and indicates if the register is local or temporary. The last
letter indicates the type of the register, it can be either:

i -integer
¢ - condition
d - double

f -float

| -long

v - validation

The number in between denotes the register number. Additionally the number can
be followed by both a p and an s. p denotes that the register spans more than one
basic block and s that the register is in SSA form.

7.1.2 Step by Step example

As an example consider a small Java program that simply prints “Hello Jikes!”. The
main method is shown in listing 7.2 as bytecode.

Listing 7.2: Simple class’ main method as bytecode

1| Method void main(java.lang.String[])

2 0 getstatic #12 <Field java.io.PrintStream out>

3 3 Ildc #15 <String "Hello Jikes!">

4 5 invokevirtual #20 <Method void printin(java.lang.
String)>

5 8 return




36

Line 2 gets the static out field from the System class and puts it on the stack.
Then get the string constant “Hello Jikes!” and put it on the stack, this will be the
argument for out method call. Finally invoke the method printin on the out
object with the string as argument, then return.

The first column in every line is the index of the current opcode in the class file,
next is the opcode followed by the operands and an optional comment surrounded
by < and >. The comment usually indicates what class or method the operation
is working with. In order for Idc #15 to be of any meaning one would need to
know that index 15 in the constant pool contains the string “Hello Jikes!”.

Listing 7.3: Simple class as HIR
1| -13 LABELO Frequency: 0.0

2] -2 EG ir_prologue 10i([Ljava.lang.String;,d) =

3|0 getstatic  tli(java.io.PrintStream) = <mem loc
;java.lang.System.out>

4|5 EG null_check t2v(GUARD) = tli(java.io.
PrintStream)

s| 5 EG call AF CF OF PF SF ZF = <unused>,

virtual"java.io.PrintStream.printin (Ljava/lang/String
)V, t2v(GUARD), tli(java.io.PrintStream), "Hello
Jikes!"

6| -3 return <unused>

7| -1 bbend BBO (ENTRY)

The HIR code in listing 7.3 is slightly more complicated than the bytecode. Line 1
defines the label, the first field of line 1 indicates by a negative number that this is
not part of the original bytecode. The exact number is determined by which part
of Jikes inserted the code.

Line 2 is still not part of the original bytecode. The ir _prologue instruction sets
up the call stack prior to executing a method including loading references to the
method parameters. In this case loading a reference to parameter into the local
register 0. The parameters are of type String array, as can be deduced from the
string; ([Ljava.lang.String;,d) . The [ indicates a one dimensional array
of the type indicated by L, String . The ,d determines if the variable is either:

X - extant

d - declared type
p - precise type
+ - positive int

The statement in line 3, getstatic  , corresponds directly to line 2 in the bytecode.
Register tli is a reference of type java.io.PrintStream . It is set to the con-
tent of the the memory location resolved by <mem loc:java.lang.System.out>

The instruction at line 4 checks if the contents of the tli register prior to the call
instruction in line 5 is null . The result of the check is stored in t2v which is of
type is GUARDIf t1i is null a null pointer exception is thrown.

Line 5 calls the virtual method printin  on the type PrintStream  with argument
of type String  and return type V, for void. The call is made only if allowed by
the guard t2v . If allowed println  is invoked on the object referred to by register
tli with the parameter “Hello Jikes!”. This is similar to invokevirtual in bytecode,



7.2 Construction of the Intermediate Representation 37

except when the null check is explicit. The letter combinations in the beginning,
AF, CF etc, describe which EFLAGS can be set on the IA32 architecture[Bre03].

Line 6 contains a return instruction with no operands, thus returning void. And at
last an indicator showing that this is the end of the basic block.

For further information on the IR instruction set please refer to the source code in
rvm/src/vm/compilers/optimizing/ir dir of the Jikes RVM source distribution[dev03c].

7.2 Construction of the Intermediate Representation

7.2.1 Control Flow Graph and Basic Blocks

A program in IR form consists of a number of basic blocks, each representing a
“straight” part of the program with no jumps in or out in the middle of the block
(e.g. a basic block can be a part of a method from start until a condition, method
call or throw operation).

Instructions that can end a basic block are jumps (conditional or not) or instruc-
tions that might throw an exception. Instructions that may throw an exception—
are called PEI(Potential Exception-throwing Instruction) in Jikes RVM. In IR this is
denoted by an E before the operator.

Figure 7.1 show a simple program in a simple IR divided into basic blocks. The
call _method instruction can cause an exception to be thrown and can be seen as
a conditional branch.

BB1 [2: if 1 <= 10 goto 4

/\

[3: return i ] 4: i = i+l
BB2 BB3 5: call method
7: catch_exception [6: goto 2
8: goto 3
BB4

BB5
Figure 7.1: Basic blocks

The basic blocks form a control flow graph with the basic blocks as nodes and
edges representing the control flow. Basic blocks can be found by determining
leaders[Kri03]. A leader is the first instruction of a method, or an instruction |
if in the program exists a statement goto | . The instruction immediatly after a
goto is also a leader. Following this definition a basic block is a leader and all the
instructions following it until the next leader.



38

Finding leaders

The simple IR from the previous example is shown in listing 7.4 on page 38. A
leader is[Kri03]:

1. The first line of a method is a leader
2. Line L is a leader if there is a tuple that jumps to L
3. Line L is a leader if the previous line contains a jump

Thus it is determined that line 1 is a leader according to 1. Lines 2, 3, 4 and 7
are leaders according to 2. And line 6 is a leader according to 3 and since any
instruction that might cause an exception to be thrown is also a conditional jump
to the catch block.

Listing 7.4: Simple IR for a method

inti =20

if i <= 10 goto 4
return i

i = i+l
call_method

goto 2

catch exception
goto 3

® N o AW N e

7.2.2 Factored Control Flow Graph and Extended Basic Blocks

A

BB1 [2: if 1 <= 10 goto 4

/\

p
[3: return i ] 4: i = i+l
BB2 BB3 5: call _method
6: goto 2
\ A
N
7: catch_exception
8: goto 3
BB4 \ <

Figure 7.2: Extended basic blocks

Though the control flow graph seems nice, the basic blocks tend to become rather
small, thus generating a large amount of nodes and edges.

Jikes RVM operates with the notion of extended basic blocks in which method calls
and throw calls do not end a block. An extended basic block has a single entry
point, one normal exit point, and can have several exits from throw operations.
Extended basic blocks form a factored control flow graph[CGHS99].



7.3 Noteworthy Instructions 39

The reason for using factored control flow graph is that for most analysis the pos-
sible exit points due to exceptions do not complicate the analysis and will enable
some optimizations normally not feasible on basic blocks. Furthermore it decreases
the number of nodes and edges in the control flow graph significantly thus making
analysis faster.

The factored control flow graph for the example in listing 7.4 would look like in
figure 7.2.

Notice that call _method no longer triggers the contruction of a new basic block.

For a more thourough discussion of factored control flow graphs see [CGHS99].

7.2.3 From Bytecode to Intermediate Representation

Constant propagation Escape Analysis
Dead-code elim. Redundant load elim.
Simple inlining Inlining etc.
Bytecode > HIR | Optimized HIR
Olbject layout
Inktruction expanding
. . Inlining
Symbolic -> physical-
yn.l Py Redundant loa v
registers L
MIR - Optimized LIR |« LIR

Live variable analysis
Register allocation
Generate

\ 4
executable code
Optimized MIR >

Machine Code

Figure 7.3: BC to HIR to LIR to MIR to MC

The HIR is constructed by abstract interpretation of the Java bytecode, with a few
optimizations done at the same time; among them constant propagation and dead-
code elimination.

When the bytecode has been translated to HIR all optimizations suitable for HIR is
performed. Then HIR is converted to LIR, then optimization for LIR is applied and
finally the code is translated to MIR, and after applying optimizations the code is
compiled to machine code. A graphical overview is given in figure 7.3

LIR can be up to three times larger than HIR as instruction such as new is expanded
with explicit calls to allocaters and specific instructions to get information in the
object model.

MIR is closely tied to the target architecture and is thus different from IA32 and
PPC. MIR code is even larger than LIR and is not suitable for reading.

7.3 Noteworthy Instructions

HIR has a special instruction for dealing with SSA form. The phi instruction,
that based on which basic block (execution path) was used to reach the instruc-
tion can determine which register of two to move to the target register. phi



40

<target>,<register from pathl><register from path2> . See chap-
ter 4.



Chapter 8

Runtime data-organisation in
Jikes

This chapter will give an overview of how the Jikes RVM organizes its objects, and
how it manages its heap and stack. Allocation and deallocation of objects will be
described, and a short introduction to implicit deallocation (garbage collection)
will be given.

This knowledge will later be used to describe how method-local objects can be
allocated on the stack.

8.1 The Object Model

Object reference

Scalar Object i
Fieldn | Field3 | Field2 | Field 1 Header :
Low T High
Memory Memory
< Array Object >
Header Length Elerrllent Eler;ent Eler;lent Eler:ent

Object reference

Figure 8.1: A scalar and an array object

An object in the Jikes RVM can either be a scalar-object containing fields, or an
array-object containing elements[RVMO3]. Scalar objects are laid out from high
memory to low, and array-objects are laid out from low memory to high (see
figure 8.1). Array elements are accessed with a negative offset from the object-
reference. The reason this is done is that this layout gives free null-pointer checks
via hardware-traps on the AIX-platform [AABT00]. The object header is placed at
a fixed negative offset off the object reference, This guarantees that an object can
be identified without knowing if it is an array or a scalar object.

Each object in the Jikes RVM includes a number of headers, containing information
concerning different part of the Jikes RVM, such as locking information, reference

41



42

counts and different status bits. One of the key elements in the header is a reference
to the Type Information Block (TIB) associated with the objects class.

The TIB is a set of object references that defines the type of a class [AAB*00]. The
TIB contains references to the superclass (if any) of the class, fields of the class,
and references to compiled versions of the class’s methods. A compiled method is
stored as an array of machine instructions.

Listing 8.1: A couple of static declarations

class A { static int i = 1337; }
class B { static String s = "asdf"; }
class C { static void m(){} }

Description JTOC String object
1 (Header) 1 (Header) (Header)
2 EMPTY 2 o] "asdf"
3 | REFERENCE_FIELD 3 (object reference) 1 int array
4 | NUMERIC_FIELD 4 1337 (Header)
5 METHOD 5 (code reference) ’/ machine code

Figure 8.2: Resulting entries in JTOC

All global accessible data are available through the Jikes RVM Table Of Content
(JTOC). The JTOC is declared as an array of ints, but is really an array of mixed
types. Each value in the JTOC is either a reference or the int-value of a primitive
type. To keep track of the different types in the JTOC, Jikes maintains another
array co-indexed with the JTOC. This array describes the type of each value in the
JTOC.

JTOC contains references to all static fields, all static methods and all TIBs. Prim-
itive fields are stored directly into the JTOC. The JTOC is in other words for Jikes
what the constant pool is for Java. An example of how the JTOC will look after a
couple of static declarations is depicted on figure 8.2 and the sample code is listed
in listing 8.1

8.2 The Memory Model

The memory is divided into the heap and the stack. The stack grows from low
memory to high, and the heap from high to low. All objects are allocated on the
heap.

Conceptually the memory can be seen as two different areas, the program-area
and the Data-area [GBJLOO]. The program-area contains the executable part of the
data, and the data-area contains the remaining data. There is a long way from this
abstraction to how the memory is organized in reality. The heap contains most of
the program data (JTOC and compiled methods), since these are kept in an array
stored on the heap.




8.2 The Memory Model 43

8.2.1 The Stack

parameter 1

I
| parameter n [

Caller frame

call site reference

caller frame reference

method id

spill area

SWRIPPERIS

saved GPR 1

\ saved GPR n 1

saved FPR 1

\ saved FPR n 1

callee parameter 1

A
1
1
[
1

callee parameter n 1

Callee frame

Figure 8.3: Layout for a stackframe (Intel version)

The stack is a stack of frames, one frame for each method that has been invoked but
not yet completed. When a method invocation occurs, a new stackframe is pushed
on the stack. A stackframe is generated for each method invocation; the instruction
that causes the invocation is called the call site. During execution of a method, the
state of the registers will change. Some registers are dedicated, while others can
be used as the compiler wishes. These are the General Purpose Registers (GPR)
and Floating Point Registers (FPR). This means that when a method invocation
occurs, the state of the GPRs and FPRs at the call-site must to be saved, in order
to guarantee that they return to their “original” state when the invoked method
returns to the call-site.

When a method returns, its stackframe is popped from the stack. The stackframe-
reference is moved back to the caller frame, and the instruction reference is moved
back to the call-site. The method’s return-values (if any), are stored in a dedicated
register, which can be read by the caller frame.

Before a method is executed, its prologue is executed. The prologue is responsible
for updating frame-references, call-site references, and saving the needed registers.
After a method is executed, its epilogue is executed. The epilogue restores the saved
registers, and updates the frame- and call-site- references.

The frame contains:

References to method-arguments (shared with the calling frame.)

Reference to the call site (an instruction reference)

Reference to caller’s frame

ID of the method

A spill area that can be to store local data than cannot be fit in registers.

— Value of registers from caller (General Purpose Registers and Floating Point
Registers)



44

— Parametres to callee frame
The layout of a stackframe is depicted on figure 8.3.

The stack is managed by a stack manager. The stack manager controls all manip-
ulation with the stack. It also pushes, and poppes stackframes when requested to.
The stack is formally declared as an array of ints (but like the JTOC, it is really an
array of mixed types). Each entry in the stack-array, is called a slot. Each slot can
either contain a reference to an object (such as an parameter to the method), or
the integer value of a primitive. As such any value can be stored on the stack, the
stack manager contains methods to allocate a given size of data. So one could for
instance allocate enough space to store an entire object on the stack.

8.2.2 The Heap

The Jikes RVM supports a number of memory managers for management of the
heap. A memory manager provides an object allocator, and a garbage collector.
The choice of allocator and collector is represented in a plan. Each time an object
needs to be allocated, or an garbage collection is trigged, the plan is consulted.
The correct collector/allocater is found, and the requested operation is preformed.

Different memory managers use different methods to allocate and deallocate ob-
jects from the heap, but they all provide a mechanism to put (allocate) objects onto
the heap, and remove (deallocate) them again. They all use a small-object heap,
and large-object heap. This enables the manager to handle allocation and deallo-
cation of large and small objects differently[AABT00]. The performance penalty
for copying small objects is smaller than for large objects.

Threads in the Jikes RVM are multiplexed onto a number of virtual processors[AAB*00].
Each virtual processor has a garbage collector and a local memory-space associ-
ated with it. The processors share a memory resource from which they request
memory-block, but all access to this shared resource must be synchronized, and

is therefore expensive. To reduce this overhead, each processor keeps a processor
“local” memory-space. The local memory-spaces are not restricted, processors can
freely address each others memory-space, but only the owner of the local memory
space can allocate and deallocate from it.

8.2.3 Heap Allocation

An allocator’s job is to allocate space for an object on the heap. When fed with
information about the type of object (scalar or array), and size, it will find a free
block of memory, and allocate it to the object.

The memory manager divides the heap up into a large and small-object space. Allo-
cation from memory that is shared between the virtual processors require synchro-
nization. To reduce the synchronization overhead, each virtual processor keeps
a processor-local space used for allocation of small objects. This space does not
require synchronization, and all small-object allocations are done here. When a
processor local-space runs out, it requests a new from the shared pool.

When an allocator runs out of free space, it triggers a garbage collection, that
hopefully will result in enough free space to handle the request. If an allocator



8.2 The Memory Model 45

fails to allocate the requested amount of memory after a garbage collection, the
system runs out of memory.

8.2.4 Object Creation

The creation of an object is divided into two phases: allocation and initialization.
In the allocation phase, the object’s class is examined and the amount of memory
needed to store the object is determined. An allocator is queried for the needed
memory, and if the allocator succeeds it returns a reference to the memory-block.
An simple illustration of this is depicted on figure 8.4.

Stack Method Heap

Prolouge

method id ——» Body
new.. — |

Epilouge

Figure 8.4: References to objects point into the heap

In the initialization phase, the object’s header is created, and a reference to the TIB
is created. If the object is an array object, the length is stored in the header as well.
When the object has been prepared, the object’s constructor is invoked.

Objects in Java are allocated with the new keyword. On this level no distinction is
made between object allocation and initialization.

Listing 8.2: Allocation of a String object in Java

String s = new String();

After this line s will be a reference to the newly created String -object.

On the bytecode level the new operator allocates memory for a new object. Object
initialization must be done explicit by invoking the object-constructor.

Listing 8.3: Allocation of a String object in bytecode

0 new #2 <Class java.lang.String>
3 dup
4 invokespecial #3 <Method java.lang.String()>

Each instruction explained:

1. Allocate space for an new String object, and put the reference to the new
object on the operand stack.

2. Duplicate the reference to the object

3. Invoke String objects constructor (on the reference)

The HIR-level also distinguishes between object allocation and initialization. The
new operator allocates memory for a new object. The object are initialized by
calling the objects constructor.




46

Listing 8.4: Allocation of a String object in HIR

5 EG new t4si(Ljava/lang/String;,p) = java.lang.String

9 EG call AF CF OF PF SF ZF = 696, special_exact"java.lang.
String.<init> ()V", <TRUEGUARD>,

t4si(Ljava/lang/String;,p)

These instructions boil down to

1. Allocate space for an new String object and store the reference to it in register
t4si
2. Invoke the String objects constructor (java.lang.string.<init>)

The main difference is that the reference now is stored in a register, and not on a
stack, as HIR is written for a register-based machine.

8.2.5 Heap Deallocation (Garbage Collection)

Java uses implicit-deallocation. This relieves the programmer from the tedious task
of de-allocating data when it is no longer used. This is instead done by the garbage
collector.

A garbage collector’s job is to remove garbage from the data-area. Garbage is data
that are no longer referred from the program-area. Garbage is found by locating
all data in the heap that is directly or indirectly referred to from the program area.
The remaining data can safely be regarded as garbage. The referred data can be
located, by scanning the program-area for references. Each reference is followed,
and the referred block of data is marked as being alive. Each found block of data,
is then again scanned for references, which again are followed. This process is
repeated, until all referred data have been found.[GBJLOO]

The garbage collector works from a root set. The root set is the set of references
that, when followed resolves to all live objects in the data-area. The root set at a
given point in Jikes is the union of all references in the stack and JTOC.[GBJL0O]
[AAB100].

At every point in the code that can trigger a garbage collection, the compiler gener-
ates a garbage collection map (GC-map) [RVMO03]. This map describes all locations
in the stack that currently contain references. The GC-map combined with the
references in the JTOC are the root set for the garbage collector.[AAB*00]

When a garbage collection is triggered, thread switching is disabled on the virtual
processors, and each processor’s garbage collector is started. Each garbage collec-
tor is responsible for marking live objects in its virtual processor’s local memory-
area. At certain points during the collection, the garbage collectors must synchro-
nize to perform tasks that cannot be performed in parallel. Marking live objects
can for instance be performed in parallel, while deallocation of the individual ob-
ject can only be done by a single garbage collector. When the garbage collectors
have completed the collection, thread switching is re-enabled, and life goes on.




Part III

Implementation

47



Chapter 9

Implementation of the escape
analysis

This chapter will describe how the escape analysis is implemented and applied to
the HIR code. The description will not cover the code in detail, but will unveil the
general principals of the escape analysis.

9.1 Overview of the Implementation

The escape analysis algorithm from chapter 5 has been implemented in the Jikes
RVM’s optimizing compiler, as part of the compiler pipeline just after the code has
been converted to SSA form. It is implemented as a standard compilation phase
and as such can be enabled and disabled just like any other Jikes RVM optimization.

The analysis is done on HIR code, and does not support neither LIR or MIR. HIR
was chosen as the target as it still contains object allocation as a single instruction
whereas LIR and MIR expand these to several instructions.

The implementation includes a switch to enable inter-procedural analysis(IPA). To
enable IPA just give the option escape _ipa=true  to the optimizing compiler.

The implementation also supports printing the HIR code prior to analysis.

9.2 Algorithm Implementation Details

Central to the analysis is a method looping through all of the statements in a
method in HIR form. The code is assumed to be in SSA form, though no check
to ensure this is made.

Inside the loop a switch statement delegates control to each of the effect state-
ment’s handler methods. That is, there is a method for handling new statements
and one for method calls.

48



9.2 Algorithm Implementation Details 49

9.2.1 Effect Statements

Each register encountered in an effect statement is stored in a summary object
pr method, where each register has values for each property: fresh, escaped, re-
turned, and loop. These summary objects are themselves stores in a central sum-
mary database for the entire VM.

Depending on the effect statement properties may be modified and contraints may
be implied on these. For instance a register assigned a reference to an new object
allocation should be set to fresh.

Most effect statements in HIR correspond directly to the Java counterpart described
in section 5. This is true for return, throw, assignment to a field, assignment to a
static field, new and method calls.

Phi functions are present in HIR as actual instructions; only later converted to
regular ref move instructions at the end each control flow branch. This makes it
easy to determine the registers involved in loops or complex conditional branches
in a program.

An assignment from on local variable to another local variable in Java is equivalent
of a ref move in HIR. In such case, if the target’s properties change, the changes
should be reflected in the trigger as they are essentially pointing to the same object,
and naturally there is only one object to allocate on the stack so the target can never
be fresh.

9.2.2 Modelling Constraints

To reflect changes to the target register in the source register, a dependency is
added between the properties of the target register and the source register. A
seperat list of dependencies is maintained for each register along with the proper-
ties. The dependency list associated is then evaluated when the register changes
any of it’s properties. A dependency is removed if it’s target reaches the top ele-
ment of it’s lattice (< T). The dependency is more or less an expression of the
upper bound between two properties.

Contrary to the theoretical walkthrough of the algorithm, the implementation mod-
els the freshness lattice 7 as a binary lattice because HIR does not declare variables
as in Java source: A register is only introduced if it is assigned a value. So a register
can never be uninitialized. This simplifies the upper bound operation to a simple
logical OR.

9.2.3 Inter-Procedural Analysis

IPA is achieved by keeping track of a methods parameters in the same way as any
other register in the analysis. This information is stored in the method summary as
well. This is used to determine the effect of method calls. If a method has not yet
been analyzed, the analysis can it self expand the analysis to include this method.
If a method tries to analyze itself it is conservatively assumed that all arguments
escape and that the method is not fresh.

If IPA is not enabled the arguments to a method is conservatively assumed to es-
cape.



50

9.3 Fitting it All Into Jikes

The Jikes RVM provides classes for almost any kind of manipulation of the IR code
one could imagine. All analyses are done using these classes, though it already is
quite easy to do analyses on a representation like HIR.

The only part of the Jikes RVM modified to include our escape analysis is the opti-
mization planner which now includes a line for initializing the escape analysis.

To facilitate easy testing a small test suite was written to run a specified program a
certain number of times, dumping the contents of the method summary database
after each iteration. This can also be used for timing the process.



Chapter 10

Explicit Deallocation of
Method-local Objects

This section presents two suggestions on how to deallocate method-local objects
without the help of the garbage collection system. None of these suggestions have
been implemented.

As Objects in the Jikes RVM are deallocated implicitly by garbage collection, an
object will remain on the heap until it is identified as being unused by a garbage
collector, which will then deallocate it.

Garbage collection is a costly process, as all other processes must halt while the
garbage collector identifies and deallocates objects. A garbage collection can be
triggered by a number of events, but usually the key factor is the amount of space
left on the heap. If method-local objects could be deallocated explicitly when a
method returns, fewer objects would be allocated on the heap, and in the best case
several garbage collection-runs could be avoided.

When a method is invoked, a new stackframe is pushed to the top of the stack.
When the method returns, its stackframe is popped from the stack. The stack-
frame’s lifetime is thus, ignoring the prologue and epilogue, the same as the method’s.

10.1 Stack Allocation of Method Local Objects

Stack Method

Prolouge
new_stack ...

method id ——»|

Body
A

Epilouge

Object

Figure 10.1: Objects could be allocated in the methods stackframe

If objects where stored inside the stackframe, they would be removed from the
stack as the method returns. Method local objects can therefore safely be stored in

51



52

the method stackframe instead of the heap. When the method returns, the objects
will be removed along with the stackframe.

This approach requires following steps

— The new instructions that would have allocated the objects on the heap must
be removed from the method.

— A new new_stack instruction that allocates space on the stack must be in-
serted in the method prologue for each method-local object.

— The object must be allocated on the stack, and references to the allocated
space must be stored in the registers that would have been set by the new
instructions.

Figure 10.1 depicts how the stack and method would look after these steps. Note
that we are operating on HIR level, and the code is in SSA-form. So if we store
the reference to the stack-allocated method-local object in the same register as the
objects new instruction would have done, we don’t have to worry about the register
being overwritten by some other instruction between the allocation and the point
where the object’s init-method needs the reference.

When a method’s prologue is executed, the stackframe is already written, and it
would be unfortunate to have to resize it. It is therefore necessary to do the object
allocation in the stackframe when the stackframe itself is created. The new_stack
instruction which is inserted in the method prologue will store the reference to the
allocated object in the same register as the new would have.

No changes to the GC-map are needed, as the reference to the object on the stack
is stored the same place as the new instruction would have stored its reference.

Objects are method-local, so when the method ends, no references to the object
will exists other than the one originally created in the method. A block of memory
on the stack is just as accessible as a block on the heap. A reference to an object on
the stack is therefore as valid as a reference to an object on the heap.

Stack-allocation of the objects would probably be the most efficient way to allocate
and deallocate method-local objects, but it could also turn out to be a bit difficult
to implement as changes to the stackframe are needed. If the objects is to be stored
on a stack-frame, the layout of the stackframe must be changed to accommodate it
and the size of the stack would grow considerably. None of these problems would
be impossible to overcome though.

10.1.1 Allocation of Object in a Object Stack

Stackbased Object Allocator
Stack Method

Local Objects Frame

Prolouge
new_lof

! 1
1 .
Object !
) Body /’Y 1
method id ——» new_stack ...—] ! !
» |
! 1

new_stack ...
Epilouge
pop_lof

Figure 10.2: Method-local objects could be allocated in a object-stack



10.2 Implementation 53

Another way of implementing the deallocaton of method-local objects is to intro-
duce a new Stackbased Object Allocator (SOA). The SOA will maintain a stack of
Local Object Frames (LOF), each frame will contain one or more objects. When a
method invocation occurs, a new LOF will be created. Method-locale objects are
now allocated in the LOF instead of the heap. When the method returns, the LOF
is popped.

This approach requires following steps

— Anew_lof instruction that creates a new LOF must be inserted in the method
prologue.

— The new instructions that would have allocated the objects on the heap must
be replaced with a new_stack instruction that allocates the object using the
SOA.

— A pop_lof instruction that pops the methods LOF must be inserted in the
method’s epilogue.

This would result in the SOA pushing and popping LOFs in tandem with the stack.
One possibility is to let the SOAs alloc-method accept a list of object types, and
return a list of references to the newly allocated objects. These references would
then be stored in the correct registers. The allocation of the objects would no
longer need to be done in processes of creating stack-frames, but could be inserted
in the method’s prologue. When the method returns, the SOA simply pops the
Local Object Frame. This model is depicted on figure 10.2

10.2 Implementation

None of the above described systems have been implemented. We are aware of the
fact that we could have overlooked a lot of implementation specific problems, but
we feel confident if one of the above systems where implemented it would lead to
performance gain.



Part IV

Results

54



Chapter 11

Analysis Results

This chapter will describe the tests of the escape analysis implementation in the
Jikes RVM. The test where also preformed on an actual application. A full listing
of the tests and the analysis-result can be found in chapter B on page B in the
appendix.

11.1 Testing the Jikes RVM

As the Jikes RVM is made with the purpose of being a testbed for VM technologies,
it provides several possibilities for testing and benchmarking.

A set of tests is provided with the distribution, unfortunately none which can be
used to verify escape analysis. The tests can be run on different versions (images)
of the VM. The OptTestHarness image is designed to test the optimizing com-
piler. It compiles everything with the baseline compiler, except the classes specified
by the user which are compiled by the optimizing compiler.

Benchmarking should be performed on images built with optimizing and adaptive
optimizations such as an FullAdaptive image which will compile the whole VM
with maximum optimizations and run the program in a adaptive context. This
is currently the best performing Jikes RMV image. But benchmarks would only
matter for measuring the overhead involved in performing the escape analysis,
which has not been a goal for this paper.

The Opt images, images which compile all methods with the optimizing compiler,
have terrible startup performance as all methods have to be compiled with the
resource intensive optimizing compiler[RVMO03].

11.2 Examining the Escape Analysis

To test the implementation of escape analysis we chose to use the OptTestHarness
program. This gives us full control of which methods to compile and later checking
against the source.

For each variable in a method following boolean properties are examined:

returned is the object returned from an method?

55



o AW N =

A wWoN =

56

fresh is the register fresh?
escaped does the object escape the method?
loop is the object involved in more than one program-path?

Further more each method is flagged as fresh if it returns a fresh object.
Following tests will be preformed:

— Assignments to a static field

Return of a fresh object

Assignment to a non-static field
Objects passed as argument to a method
Recursive calls

Multiple program paths

For a full listing of the test-results, see chapter B on page B in the appendix.

11.2.1 Assignment to a Static Field
This test will assign a fresh object to a static field, this should result in the object
escaping.

Expected Result: the object is fresh, but escapes.
Result: the object is identified as fresh, and escaped. The test is successful.

As expected the fresh object is identified as having escaped. The object is fresh as
it is created with the new instruction on line 4. The test is successful.

The Java- and HIR-code for this test can be seen:

Javacode:

static Object o;

public void assignStatic()

{
Object t = new Object();
0 =t

}

HIR-code:

-13 LABELO Frequency: 1.0

-2 EG ir_prologue [0si(LTest3;,x,d) =

0 G yieldpoint_prologue

0 EG new t2si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>, t2si(Ljava/lang/
Object;,p)

10 putfield t2si(Ljava/lang/Object;,p), 10si(LTest3;,
x,d), -16, <mem loc: LTest3;.i>, <TRUEGUARD>

-3 return <unused>

-1 bbend BBO (ENTRY)




11.2 Examining the Escape Analysis 57

11.2.2 Returning a fresh object

This test will invoke a method that should return a fresh object. When a method
returns a fresh object, the method itself should be marked as being fresh.

Expected Result: the method is marked as being fresh, and the object should be
identified as being fresh and returned.
Result: the object is identified as fresh, and escaped. The method is fresh.

The algorithm successfully identifies the return object as fresh, and the method is
also tagged as fresh. The test is successful.

The Java- and HIR-code for this test can be found in section B.2 on page 82 in the
appendix.

11.2.3 Assignment of an Object to a Non-static Field

This test will assign a fresh object to a non-static field, the object should escape.

Expected Result: The object should escape.
Result: The object escapes, the test is successful.

In the current implementation of the escape analysis, an object escapes if it is
assigned to a field. The object do not necessarily escape if it is assigned to non-
static field of this , but the current implementation will not differentiate between
this and any other object reference. The algorithm correctly identifies the object
as escaped, the test is successful.

The Java- and HIR-code for this test can be found in section B.3 on page 83 in the
appendix

11.2.4 Objects Passed as Argument

This test will pass two objects as arguments to a method. The callee will assign one
of the objects to a static field, and the other will be returned. The parameter that
is assigned to at static field should escape as it where the case in section 11.2.3. A
parameter that is returned does not necessary escape.

Expected Result: The object that is assigned to a static field will escape, while the
other will not.

Result: The first parameter (that is assigned to a static field) escapes, the second
does not.

The test is successful.

The Java- and HIR-code for this test can be found in section B.4 and B.5 on page
84 and 85 in the appendix.

11.2.5 Recursive Calls

This test will invoke a method recursiveCall, that returns an objected created by a
method recursive  that calls recursiveCall . Despite the fact that this recur-
sion is infinite, all objects should still be identified as not escaped.



58

Expected Result No objects should escape
Result No objects escape.

Even though the recursion is infinite, none of the objects survives longer than the
method that originally invoked recursiveCall . Therefore non of them escapes.
The test is successful.

The Java- and HIR-code for this test can be found in section B.7 and B.6 in the
appendix.

11.2.6 Multiple program paths

This test contains a if-then-else block. This means that there are multiple paths in
the program. The purpose of the test is to examine how the algorithm handles this.

Expected Result The object should escape.
Result The object escapes.

As the value of a variable cannot be determined if it is assigned in one or more
program-paths that converge, if an object participates in multiple data-paths, it
should simply be regarded as escaped. The algorithm correctly identifies the object
as escaped. The test is successful.

The Java- and HIR-code for this test can be found in section B.8 on page

11.3 Examining Real Programs

We have examined real programs with a BaseOptSemiSpace image. The examined
programs were:

VolanoMark - a benchmark simulating a Java servlet based chat server
Scimark - another benchmark simulating some scientific calculations

11.3.1 VolanoMark

VolanoMark consists of a server and a client program. The test program starts the
server and connects 100 clients to the server.

The escape analysis identified 280 allocation sites in the VolanoMark server code.
139 of these could have been allocated on the stack.

The VolanoMark client exhibited similar behavior with 116 allocation sites of which
59 could have been stack allocated.

11.3.2 Scimark

Scimark is a different kind of beast than VolanoMark. It mainly uses primitives in
calculating it’s benchmarks. This is reflected in the results from the escape analysis
which shows 33 allocations and 31 of these stack allocatable. This large percentage
is caused by the way Scimark is constructed.



Part V

Discussion

59



Chapter 12

Discussion

In this paper we have presented and implemented an algorithm for escape analysis
in the Jikes RVM, with the purpose of examining the feasibility of allocating objects
on the stack compared to Java’s default heap allocation.

The algorithm from [GSO0] was chosen because of its simplicity and basis in ab-
stract interpretation. As mentioned in chapter 5, others variations of escape analy-
sis exists. These algorithms are more precise but also a lot more complex.

The Jikes RVM was chosen for many reasons. Most importantly, because it is imple-
mented in Java, and thus provided all the benefits of the Java language. Also, the
compile only approach easily enables static analysis of small programs. The escape
analysis could just as well have been done using JavaCC or Soot or any similar
framework, on Java source code or bytecode. If escape analysis had been the sole
goal of this paper, a functional language like SML would have been more suitable
for implementing the actual escape analysis.

Our tests shows that our implementation works as expected, and that approxi-
mately 50% of all objects in a real application are suitable for allocation on the
stack. The original [GS00] report identifies approximately of 20% of all objects as
allocable on the stack. We are confident that a broader testsuite would result in
similar test. It should also be noted that the high percentage of stack allocatable
objects, might be due to the fact the we count allocation statements in the code
and not the number of allocated objects at runtime.

Not all local objects are suitable for allocation on the stack. It is only desirable to
allocate an object on the stack if the lifetime of its scope is relatively short compared
to the program. This is due to the fact that, unlike heap-allocated objects, a stack-
allocated object cannot be deallocated until its scope terminates, tying up precious
memory. For a discussion of escaping objects and their lifetime and connectivity
see [HHDHO2].

In listing 12.1, the object referenced by a isn’t used past line 4. It clearly does not
escape main . Normally, if a is allocated on the heap, liveliness analysis [GBJLOO]
would determine that a isn’t referenced past line 4, and therefore can be triggered
for garbage collection. If a is allocated on the stack, it will not be allocated until
main terminates on line 8 after the call to somelLargeMethod .

60



61

Listing 12.1: Stack-allocating an object in main()

1| public static void main( String args[] )
2| {

3 C a = new C();

4 System.out.printin( a.f );

5

6 C b = new C();

7 b.someLargeMethod();

s| }

Because of this the algorithm is not dependent on analysis of the whole program.
Outlook for combining the escape analysis and eventually stack allocation with the
Jikes RVM’s adaptive optimization system looks bright as the adaptive system will.

So would stack allocation in the Jikes RVM be feasible? Absolutely. But it would
require a some non-trivial changes to the Jikes RVM and optimization both for
speed and memory utilization of the escape analysis implementation.



Chapter 13

Conclusion

We have successfully implemented escape analysis in the Jikes RVM. The escape
analysis implementation correctly determines objects that escape the creating method’s
scope in complex programs. Furthermore, we have suggested two seperat ways to
achieve stack allocation of objects in the Jikes RVM, based on the information col-
lected in the escape analysis. We are confident that both would prove useful if
implemented.

62



Chapter 14

Related and Future Work

Recent work in escape analysis either takes a more theoretical approach ([Bla98],
[HS], [WR99]) or focus on the speed improvements the analysis results can facili-
tate ([CGS199], [GS00]).

Future work on the escape analysis we have implemented in the Jikes RVM could
include expanding the algorithm to handle synchronization elimination and as sug-
gested stack allocation of objects.

To support future optimizations more benchmarks should be performed e.g. with
regards to how many of the actual allocated objects could be allocated on stack
and studies of these lifetimes.

Furthermore a similar algorithm might be interesting to see implemented in the
open source static Java compiler GCJ.

63



Part VI

Lists and Citations

64



Chapter 15

Credits

The following figures where redrawn from ASCII-illustrations found in the Jikes
source-code.

Figure 8.1 on page 41 where found in /rvm/src/vm/objectModel/VM_ObjectModel.java
in the 2.2.0 distribution.
Authors:

— Bowen Alpern
David Bacon
— Stephen Fink
Dave Grove
Derek Lieber

Figure 8.2 on page 42 where found in /rvm/src/vm/runtime/VM._Statics.java in
the 2.2.0 distribution.
Authors:

— Bowen Alpern
— Derek Lieber

Figure 8.3 on page 43 where found in /rvm/src/vm/arch/intel/VM_StackframeLayoutConstants.java
in the 2.2.0 distribution.
Authors:

— David Grove
— Bowen Alpern

Figure 6.1 on page 31 is based on the figure found page on page 6 in [AFG*00].
Authors:

Matthew Arnold
Stephen Fink

— David Grove
Michael Hind
Peter E Sweeney

Remaining figures are all done by Ulf Holm Nielsen, Thomas Riisbjerg, Trols Krogh,
or Mads Danquah. They may be freely used as long as the authors are credited.

65



List of Figures

2.1 Theabstractdomain . . . . . . . . . . . i v v vt 14
4.1 SSAtranformation . . . . . . . . . . i it 22
4.2 A control flow graph transform into SSAform . . .. ... ... ... 23
5.1 The lattice 7 representing freshness . . . . . . ... ... ... . ... 26
6.1 Crude overview of the adaptive optimization system . ... ... .. 31
7.1 Basicblocks . . . . . . . . e 37
7.2 Extended basicblocks . . . . . . . .. . ... 38
7.3 BCtoHIRtoLIRtoMIRtoMC . .. ... .. .. ... ... ..... 39
8.1 Ascalarand an arrayobject . . . ... ... ... ... ..., 41
8.2 Resulting entries in JTOC . . . . . . .. .. ... ... 42
8.3 Layout for a stackframe (Intel version) . . .. ... ... ....... 43
8.4 References to objects pointintotheheap . . . . . . . ... ... ... 45
10.1 Objects could be allocated in the methods stackframe . . . . . . . .. 51
10.2 Method-local objects could be allocated in a object-stack . . . . . .. 52

66



Listings

2.1 Program before analysis . . ... ... .. ... ... ... ... 15
2.2 Program after analysis with some variables replaced by constants . . 16
3.1 Escaping though a staticfield . . ... .. ... ............ 18
3.2 Escaping though a parameter . . ... ... ... ... ........ 18
3.3 Escaping though areturnstatement . . . . . . ... ... ....... 19
3.4 Unanalysed program . . . . . . . .. . .. vt 19
3.5 Resultofanalysis . . . ... ... .. ... ... ... ... ...... 20
4.1 Regular assignments . . . . . . . . . ... 22
4.2 Conditionalbranch . . . . ... ... ... ... . oL 23
4.3 Conditional branchin SSAform . . . . . .. ... ... ... .. ... 23
5.1 Freshness of variables and methods . . . . . ... ... ... ..... 25
7.1 Asingle statementin HIR . . ... ... ... ............. 34
7.2 Simple class’ main method as bytecode . . . . . .. ... ... .. .. 35
7.3 SimpleclassasHIR . . . . . ... ... ... ... ... . ... 36
7.4 SimpleIRforamethod. . ... ... ... ... ... ... ..... 38
8.1 A couple of staticdeclarations . . . . . ... ... ... ... ..., 42
8.2 Allocation of a String objectinJava . . . . .. ... ... ... .... 45
8.3 Allocation of a String object in bytecode . . . .. ... ... ... .. 45
8.4 Allocation of a String objectin HIR . . . . . ... ... ... ..... 46
12.1 Stack-allocating an objectinmain() . . . . ... ... ... ...... 61
B.1 Theclassused fortesting . ... .................... 80

67



Chapter 16

Citations

[AABT00]

[AFGT00]

[BCF99]

[Bla98]

[Bre03]

[CFRT91]

[CGHS99]

[CGST99]

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, PCheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. E Hummel, D. Lieber,
V. Litvinov, M. E Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Wha-
ley. The Jalapefio Virtual Machine. IBM System Journal, vol 39, no 1,
february edition, 2000.

http://www.research.ibm.com/journal/sj/391/alpern.pdf

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter E Sweeney. Adaptive Optimization in the Jalapefio JVM. 2000.

http://www.research.ibm.com/jalapeno/papers/oopsla00_aos.pdf

Michael Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael
Hind, Vivek Sarkar, Mauricio Serrano, V.C. Sreedhar, and Harini Srini-
vasan. The Jalapefio Dynamic Optimizing Compiler for Java. 1999.

http://www.research.ibm.com/jalapeno/papers/grande99.ps

Bruno Blanchet. Escape analysis: Correctness proof, implementation
and experimental results. In Symposium on Principles of Programming
Languages, pages 25-37, 1998.

Shane A. Brewer. Jikes Intermediate Code Representation. University of
Alberta, 2003.

http://www.cs.ualberta.ca/"brewer/presentations/jikesIR.ppt

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
E Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451-490, October 1991.

Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Ef-
ficient and Precise Modeling of Exceptions for the Analysis of Java Pro-
grams. IBM Research, 1999.

http://www.research.ibm.com/jalapeno/pub/paste99.ps

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P Midkiff. Escape analysis for java. In Proceed-

68


 http://www.research.ibm.com/journal/sj/391/alpern.pdf
 http://www.research.ibm.com/jalapeno/papers/oopsla00_aos.pdf
 http://www.research.ibm.com/jalapeno/papers/grande99.ps
 http://www.cs.ualberta.ca/~brewer/presentations/jikesIR.ppt
 http://www.research.ibm.com/jalapeno/pub/paste99.ps

BIBLIOGRAPHY 69

ings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 1-19, 1999.

[Cla03] GNU Classpath. The GNU Classpath Project. 2003.
http://www.gnu.org/software/classpath/

[dev03a] IBM developerWorks. Jikes ™. IBM developerWorks, 2003.
http://oss.software.ibm.com/developerworks/opensource/jikes/

[devO3b] IBM developerWorks. Jikes ™RVM. IBM developerWorks, 2003.
http://www-124.ibm.com/developerworks/oss/jikesrvm/

[dev03c] IBM developerWorks. Jikes "™MRVM source distribution. IBM developer-
Works, 2003.

http://www-124.ibm.com/developerworks/oss/jikesrvm/download/index.shtml

[FKRT00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and
David Tarditi. Marmot: an optimizing compiler for Java, volume 30.
2000.

http://citeseer.nj.nec.com/fitzgerald99marmot.html

[GBJLOO] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koben G. Lagendoen.
Modern Compiler Design. WILEY, 2000.

[GS00] David Gay and Bjarne Steensgaard. Fast escape analysis and stack
allocation for object-based programs. In th International Conference on
Compiler Construction (CC’2000), volume 1781. Springer-Verlag, 2000.

[HHDHO2] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael Hind. Un-
derstanding the Connectivity of Heap Objects. jun 2002.

http://citeseer.nj.nec.com/hirzel02understanding.html

[HS] Patricia M. Hill and Fausto Spoto. A Foundation of Escape Analysis.

[Kri03] Chandra Krintz. Lecture notes on Jalapefio. University of California,
Santa Barbara, 2003.

http://www.cs.ucsb.edu/ " ckrintz/

[LY99] Tim Lindholm and Frank Yellin. The Java™ Virtual Machine Specifica-
tion. 1999.

http://java.sun.com/docs/books/vmspec/2nd-
edition/html/VMSpecTOC.doc.html

[Rin] Martin Rinard. Pointer and Escape Analysis.
http://www.cag.lcs.mit.edu/"rinard/pointer_and_escape_analysis/

[Ros95] Mads Rosendahl. Introduction to Abstract Interpretation. DIKU, Com-
puter Science University of Copenhagen, 1995.

http://www.dat.ruc.dk/“madsr/webpub/absint.pdf


 http://www.gnu.org/software/classpath/
 http://oss.software.ibm.com/developerworks/opensource/jikes/
 http://www-124.ibm.com/developerworks/oss/jikesrvm/
 http://www-124.ibm.com/developerworks/oss/jikesrvm/download/index.shtml
 http://citeseer.nj.nec.com/fitzgerald99marmot.html
 http://citeseer.nj.nec.com/hirzel02understanding.html
 http://www.cs.ucsb.edu/~ckrintz/
 http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
 http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
 http://www.cag.lcs.mit.edu/~rinard/pointer_and_escape_analysis/
 http://www.dat.ruc.dk/~madsr/webpub/absint.pdf

70

[RVMO3]

[SMO02]

[WR99]

Jikes RVM. The Jikes™ Research Virtual Machine User’s Guide post
2.2.1. 2003.

http://www-124.ibm.com/developerworks/oss/jikesrvm/userguide/HTML/index.html

Inc Sun Microsystems. The Java™ HotSpot Virtual Machine. Sun Mi-
crosystems, Inc, 2002.

http://java.sun.com/products/hotspot/docs/whitepaper/Java Hotspot_v1.4.1/Java_HSpot.

John Whaley and Martin Rinard. Compositional pointer and escape
analysis for Java programs. ACM SIGPLAN Notices, 34(10):187-206,
1999.


 http://www-124.ibm.com/developerworks/oss/jikesrvm/userguide/HTML/index.html
 http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html

Chapter 17

Additional Litterature

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. ACM Press, New York, NY, Los Angeles, California, 1977.

71



Part VII

Appendix

72



Appendix A

Source-code for Escape Analysis

73



74

9/l

enel'sisAleuyadedssg | JOAJO/NAYSINIM/W/WOD

au) Aexayol

B

[z]sdoad: [3]sbagu +
u = pourmar:, +
[3]sbax
)3utad-3no-ws3lsAg
448
([HSHYd " soT3I0doadao3sThogpoyisW 1do]sdoad: [y]sbaaw 3%

[@EANYNLIEY * soT319d0Ida23sTOoYPOyYISW 1d0] sdoad- [y]sbaawj %%

[d00T soT3I19doagaalsThogpoyiew 1d0] sdoad: [y]sbaaw; 3%
[a3dvosd - set3redoadaelsThoypoyisnW 140] sdoad: [y]sbeawi) IFT
}
(++3 fy3bust-sbeaw > ¥ {0 = ¥ JUT) IOF
({

} [1x93sTboy 140 M

* () 219gheyax03s Axeuums ([]x93sTbaY 1d40) = sbax []ae3sTHay 1d0
£ (4iIeA, ) UTAUTId " 3N0 " We3SAS

wsesseser n + () POUIBHIBHL IT + 4 JOF YTH ANH sessesesen ) UTIUTIA " 30O wS3sLs
! ()suoTioniasuriuTtad- It

s n + () POUIBWASD IT + , 10 U[H NIDHH ssesesesen ) UTIUTIA " N0 "wa3shg
1 ({

} [1se13aedoagasisThoypoyisn 14O

M3u) Ae1Iy01l” () senTea a103s Axeuuns ([]saT3i2doIdIslsTboypoyls 1d0)
= sbaauw []saT3iradoagaslsTbaypoyisw 14O
0 = s qur
0 37T
/7

{

!yesaq
3ITnezsp

!yesaq

! (Azeuns ‘1) Tyd
spoodo” IHd osed

urol tyd //

!yesaq

! (Azeuwns “‘T) smau
spoodo” MAN osed

!yesaq

! (Azeuums ‘T)smau
5poodo EATOSHINN MAN Ssed

x¥op3s uo sAerze
23e00TTP 394 3,uop em se ‘peAToseiun mau pue mau ATuo //

!jesaq

! (Azewwns ‘T)suinisl
spoodo N¥MNILAY osed

Iyesaaq

! (Rxewums ‘T)pomoayl
opoodo  MOYHIY osed

!yesaq

! (Azeuums ‘T)oT3e3sand
5p0odoTDILVISING osed

!yesaq

! (Azeumns ‘T)preTIand
: opoodoT QTAIALNG ©Sed

Iyesaq

! (Azeuns ‘T)aaow
: 9poodo HAOW JHM osed

!yesaq

!{(suotydo-aT ‘Azeuwwns ‘T)TTED
spoodo  TIY) osed

!yesaq
! (Azeuwns ‘T1)snboroad
opoodo INHOTOEd Y1 osed
}
(spoodo) yo3zTms
! ()spoodpaisb T = spoodo gpYyD
f()3IxdUreT = T UOTIONIISUI 1dO
}
(! ()s3juswaTd2I0WS®EY "
ST ! ()I03BIBWNUHIISUIPILPMIOT (Y = ST UOTIRISWNUHUOTIONIISUI 1J0) IOF
{0 = s3ut Jur
‘()3axeureo = qq ¥oordoTsed LdO

(£ () s3u
SWSTESIONSPY 20 ! ()SYo0TgoTsedlab IT = 20 uOoTIeIdUNUIYO0TdOTsSed 1d0) IOF
feny3 = butryIOM® ATPUMINS
00
pouylsnleb-at1) Axeuwngsdeosgajleaid aseqejeghreuungadedsy 1d0 = AIewwns
(rTnu == Azeumns) 3JFT
{(()pPoUIBWISh " 1
T) Azeuungadeosgisb - sseqgeleghreuwunssadedsy 140 = Axewums Axewumnssdedsd 14O

}
(IT 91 1do)wrogaed proa oT1gqnd
{
!esTpJ uaniex
osT®
!onz3 uanisx
((YaINON
Tadyosd-suotado || ¥4I ddvOoSdsuoTrido) 3% z =< () 2ae713do3isbrsuorido) IT
}

(suot3ido suoT3do 1d0)wIioFisgpInoys uesTooq Teuty orrand
}
sx

03e18d0 140 sjusweTdwr sseydrsTTdwod 140 spus3xe sisAjeuyadedsy 1O ssero orTand
/*

$ 9°'T UOTSTASYS UOTSIDAP

x
¢ dxg pobaidp zG:LZ:ZT §2/S0/£00Z 9°T
A ‘eael - stsATeuyadeosqy 140/ 340 /WANSSYTL /WQT /WOD /HAHOP 0\ SOATL/SAD/TRA/ :TIOPROHS
*
¢ pobaxdp :zoyanyg :Aq sbueyo 3seT
*
paeebsusa3ls suxe

Lg pue Aes praeg Aq 000z woxy zoded uo poseq ‘sTsATeue sdeoss Tenjoe ay3z s90d
xx/

{4 2T 3do  WAYSSYTL " ugT wod jxodwt

!y TTIneael jxodut

!y IOPROTSSETO " WAYSONTL "WqT *wod 3xodwt
L WAMSSYTL "wqT "wod 3xodwt

13do " WAYSSY TP wqT "wod abeyoed
/*

*
‘uIn3aI uUTr I99q B Sn Anq ueo nofk
‘3T y3zTom ST JFn3s STY3 YuTry3 nok pue ‘Aep swos 399w oM JI "JFN3IS STYF YITM x
juem nofk zseasjzeym op ued nok 80T3O0U STY3 UTP3SI nok se BUuoT sy "OTTF STYI x
930xM <3yp - onxpalul> <3jp onzpyboxylz> <3jp yenbuepgspeuws <yp pobszApprozyop>
:(Zp UOTSTA®Y) ,HASNADIT FYVM-YFAL HHIL. *
x

xx/

9/¢ ebed

enel'sisAjeuyadessy 140

9/} obed enel sisA

leuyadedssy 14O




75

9/2 eAel sisAleuyadedsy | JOAJO/INAHSSYIM/wWa/WoD

(suotado
suoTt1do 140 ‘Azewwns Azeuungsdedsy 140 ‘T UOTIONIASUI 1dO) TTe0 proa o3eatad
{
{

f(qENan

I - soT3a0doagIslsThogpoylsw 140 ‘e0Inos ‘3ssp)souspusdsgiss - Axeumns
‘(a

00T soT3I19doadao3sThoYpoylidW 1d0 ‘©0anos ‘3seop)eouspusdeglss Arewwns
‘(aavy

0SHA saT312doIdIa3sThaypoylis 1d0 ‘@o0Inos ‘3seop)sdouspusdsiss  Arzeuuns
!193sTbax" () as3stThoyse: (1) pueiadpish T = 20IN0S I93STHaY 140

}

osT®

{

}
(()x93sTho¥sT" (1) TeA}SD 9A0K ) IT
!193sTbox () I93sTHOYsSE " (T) ATNSOYILHL ' SA0N = 3s9P I921STHOY 1dO

! (esTPI ‘3s°p)yssaaglss-Areuwns

}

(Axeuums Axeuwngadedsy 140 ‘T UOTIONIISUT 1d0) 2A0w proa ajzeatad

{

!++smau - Axeuuns

{
}

(()x93sthboyst-asdo) zFT
{(T)3Tnse¥gasb meN = xado pueaado 14O

!(enz3 ‘zs93sTbsx- () z91sTbayse-1ado) ysaigiss Axeuuns

}

(Azeuums Axeuwngsadedsy 140 ‘T UOTAONIISUI 1dJ0) SMau proa a3zeatad
{
! (esTPI ‘sop)ysaigissAzeuwns
{
!(enz3 ‘x93sTbox’ () 191sTboyse 201n0s)dooTias * ATPUNS
{(QEANINIHY " soT3a0doagda93sThe
YPOoUISW 1d0 ‘I23sTbax- () a23sTbayse sdanos ‘sap)sdouspuadaglas - Axeuums
! (qaavosd-seT3aadoagisisthbe
¥YPOUISW 1d0 ‘I23sTbax- () a23sThbayse - sd0anos ‘sap)sduspusadaglas - Axeuums
}
(() T91sTHboy¥sT 20IN0S 3% TTNU =] 90INOS) IFT
{(0 ‘T)enTeAlILb TYd = 90IN0S
{
!{(enz3 ‘x°93sTbox’ () z93sTbayse o0anos)dooTias  Axeuums
£ (QEANYNIHY " soT3a0doada93sthe
WMPOYISW 1d0 ‘ao3sThox: () I93sTboyse o20In0s ‘sop)odouspusdagiss * Axeuums
! (qaavosd-setiaadoagisisthbe
MPOYISW 1d0 ‘a93sThox’ () I93sTboyse 20In0s ‘sop)odouspusdagiss * Axeuuns
}
(()I21sTboysT 820aIN0S 3% T[NU =] =2INOS) IT
(1T ‘t)enTeAlsb TUd = 90anos puerado 14O
muwpmﬂ@mu.AvuwumHmwmmm.AHVMHSmmmumm.ﬂ:m|wwﬁumumﬂmwmIHmo

}
(Axeuums Axeuumgsdeosd 140 ‘T uoTioniisul 1d0) Tyd proa o3zeatad
{

{

! (en13 ‘eodinos)poadedsyilas - Arewuns
!193stbax" () as3sThoyse -pueisdo = 20IN0S I93STHaY 140

!{(x193sTbox)ysexgisb Axzeumns = ysarJ - Areuwns
!{(enz3 ‘ze93sTboI1)psuinisylss - Areumns
!193sTbox" () a93sThboyse puriado = 193sTbox I1931sTHOY 1d0

}

(()xeo1stboyst-pueaado 33 7rnu =i puexado) 3IFT

(1) TeAlSb uInley = pueaado pueaado 14O
}
(Axeuuns Axeuwwngadedsy 140 ‘T UOTIONIISUI 1dJQ) suanisx proa ajeatad
{

{

{(enz3 ‘zo3sThox () z93sTbhayse  1ado)padeosglas * Axeuwns

}

(()x93sThoysT 10do) 3T

!(1)enTeAlISb MOoIyly = 1=2do pueaado 140
}
(Azeuuns Azeuumgsdeosy 140 ‘T UOT3IONIASUI 1d40)pemoIyl proa o3zeatad
{

{

}
(()zo3stbeyst-1ado) 3T
{(T)enTeAlSb OTIRISINg = aado pueasado 14O

! (enz3 ‘z93sTbox’ () I93sTboyse  10do) padedosygilss Axeuuns

}
(Azeuums Azeuwngsdedosy 140 ‘T uOT3ONIASUI 1d40)oT3eisand proa ajzeatad
{

{

}
(++C fy3bust-sasizsweaed-Azeuwns > [ {9 = [ jur) z0F
[ (T) sTewaogFoIaqunyleb -onboTorg]puerado” 1d0 MOU = siojsweied-:Axeuums

{((T) sTewIoIJOoIDqUNNISH " onboTOIJ) ST93oWRIRJISS * ATeuwns

(L ‘1) Tewrogisbrsnboroag = [[]sasirswered: Azeuwns

}

(Azeuwns Azewwngededsyd 140 ‘T UOT3ONIASUI 1d0)eonboroad proa azeatad
{

(s + , :oIqeyoels [0, ) uT3uTad  Ino - walsAg

! (smaurAzPWUNS + , :MIUIRIOL,) UTIUTIA INO WeSIsAg

! (yseaF-Azeuums + , (USoIJ SIPOYRIA, ) UTIUTIA  In0 - we3sAg

{

Slala +

[¢]sdoad": [T]doadwaed  Azeuwns +
u =doo‘y +

[T]sdoad" [T]doadwaed  Azewwns +
u =podeoso ¢, +

[0]sdoad" [T]doadwaed  Azewwns +
w=Usay, +

[z]sdoad" [T]doadwaed  Azewwns +

W =powmer:, +
sIsjowered  AIeuuns
) 3uTad- 3no-ws1l1sAg
}
(++T {yabust-doxdwaed-Azeuwns > T fp = T JUT) IOF
4 (yis1rowered ) uT3uTId  3no " wWL3SAg

{
} fal +
(()xo3stboyst pueasdo) 3IFT [¢]sdoad" [y]sbaau +
{(T)enTeAl®b pTaTding = puerado puerady 140 w=dooy‘y +
} [T]sdoxad- [3]sbaau +
(Azeuns Axeuwumngadedsy 140 ‘T uoTionIIsSUI 1d0)preTiand proa ajzeatad u =podeoso‘, +
{ [p] sdoad" [3]sbaau +
{ w=UsIyt, +

9/t abed enel'sisAjeuyadessy 140

9/c abed enel'sisAjeuyadeasy 140




76

9/e eAel sisAleuyadedsy | JOAJO/INAHSSYIM/wWa/WoD
}
(o uotideoxygpsjuswsTdWIIONDOTOEW 1d0) yYod3jeo
{
! (uetd)sTTdwoo a7 TdWOD ™ 14O
}
K13y
‘onz3 = ATupozATeuerueTd
!{(suotaydo ‘rTrnu ‘uerds ‘()3ebielisb-poyilsu
(POYISHTBWION WA) ) ueTdquotTieTTdwod 140 Mdu = ueld ueTquotieTTdwo)d 1d0
/((1)sweregyoIoqunNieb - TTeD) SI93oweIPglas ss//
{ £
{ ) 3ebaer19b - poylsu) Axeuwnssdeosgaleaid "sseqeieglhreuunsadedsy 1d0 = SO
! s1sAreuy odeosyq, uanzex {uanjex
} ((POYISWTRWION WA Fooduelsut ()Isbiaerishb-poyisw) 3T
()sweN3ob buTtals oTTqnd {uanisx
{ (()30ea3sqyst- () 39baerisb-poyzsu || 7rnu == ()3ebierisb-poyisuw) 3JT
! ({()stsATeuyadeosy 140 mau ‘(eni3y
{ on13)oTdwts 1d0 MU ‘() YIHOIDITSAUOD 140 Mdu } []309[q0 mau
{ ‘ usisAreuy odeosq,
4o ) @sodwoo s quswsTEejTsodwopueTquoT3ezTwt3do 14O
onz3 ‘x93sTbex’ () x93sTboyse  [[]sasjsweaed)padedosygisas  Azeumns = ueTds juswsTdgelTsodwopuerTguoTiezTwildo 140
(()x93sTbaysT* [[]sas3aweaed) IFT }
} (¥d1~ 34¥DsHd - suotrido) 3IFT oST®
(++L ‘yabust-sasjsweaed > [ ‘g = [ jur) FOF {
} ! (Tealsx ‘sizsjsuweaed ‘se ‘AIeuwins) sIslsueIegyoSyd
osT®
{ !(enz3 ‘Tealsr)yssaiglss - Axewuns
{ (TTnu =j TealSI 8% YssiJ-sa) IT
{ }
N (TTnu =i se) 3IT
onz3 ‘ze3stbear () xao3stboyse  [[]sasjsweaed)padeosygias  Axeuwns £(()1ebaerish-
enrTea s3T ebupyo I8bHUOT ou urd I938wWwepIed 8yl se ajes // poylaw) Axzeumngadeosygiab -oseqeleglhrruunsadedsy 1d0 = s Axeuwnsadedsd 140

osTey 03 JFTUT ST Ysaij se ysoaj jou s3T eyl Aes 3snl TTTM

(enx3y = 17 "ATeaTsinoex ejenyeas 03 burdAijl eie em JT J0839p ArreOoTbPWOINE OM //
= [@Edvdsd-sat3asdoagislisThboypoylsn 1d0]sdoad: [[]doaduaed ss) IFT {
{ !uanysx
! (40071 s91329d01d193STHYPOYIS 1d0 ‘I93ST {
box- () x93sTbayse- [[]sasjsweaed ‘Tealal)sdouspuadsalss ATeumns N
£ (@INYINIFEY " soT3a2doIdI93SThoyYpoyis 1d0 ‘I93sT on13 ‘z93stbox* ()ao3sThbayse [[]sasjsweaed)padeosygias  Axewuns
box- () a93sTbayse- [[]saisjsweaed ‘Tealsl)souspuadsalss ATzeumns (()xz93sTbaysT  [[]sas3sweaed) IFT
! (qEdyosd - s91319doxd193STHOYPOYISW 140 ‘I93ST }
box- () a93sTbhayse  [[]saisjsweaed ‘Tealsl)souspuadsalss ATzeuuns (++C fyabust-sasejsweaed > [ fo = [ Jur) FOZ
} }
(TTnu =i TealdI 8% oniy == (rTnu == poyisw) 3IFT
[aaANdNIEY - soT319d0oada23sThoYpoy3IsW 1d0] sdoad- [[]doxduaed ss) IFT {
!/snutjuod { //
(()xoastboyst: [[]saoqsweaed|) IT (0 ‘Tyweaegisbh-T1Ted = [[]sasisweaed
} e
(++C ‘y3pusT-doaxduwzed-ss > [ ‘o = [ jur) zoF en13 ‘rzejstbex- ()ae3astbayse- ([ ‘T)weipgieb 17eD)pedeosgies -Azeuuns//
} /x}
(T7nu =i doaduzed-ss) 3FT (()123sTboyst (L ‘T)wereqiab 1red) IT+/
} }
(Tealsx I23sTbay 1d0 ‘sasisweaed []puexadQ 1d0 ‘ (++C fyabpusy-saejsweaed > [ {p = [ jur) z0OF
so Axeuumgadeosy 140 ‘Axewuums Axeuwngsadeosd 1dJ0) SI232wWeIedxoayd proa ajeatad [ (1) sweaegyoasqunNleb- TTed]puerado 140 mdu = saojsweaed []pueaad0 1d0
{ ! (T)POU3IBWILH " TTeD = poylsu puersdOpoyls 14O
{
!193sTboa" () ae3sthboyse aado = Tealsx
! (enz3 ‘Tenla1)ysaiglss - Azeuwns (()x23sTbaysTt aado %% Trnu =i I=2do) IT
(TTnu =i TeAl®I 3% ysaiJ-sa) IT {(T)aTnsay¥lsb 11D = 19do pueisdo 14O
! (Tea3sa ‘szojswered ‘sa ‘AIeuins) sI2jsaweIegyOoUd !TTnu = 90INn0Ss I931STHaY 140
{ {TTnu = Tealsx I93sTbay 14O
azoubr// }
9/9 abed enel'sisAjeuyadeds3 140 9/G obed eael'sisAjeuyadessy 1dO




77

li%

eAel Alewwngadedsy ™ | JOAAO/INAYSONIM/WQI/WLOD

! (padeosas

Aﬁlnmﬂvwﬂ
! (193sTbox) x930WRIRIST = T JUT
!poTus soT3I9doadaolsTHOYPOYISW 1dO
}

(x23sThax x93sTbhoy 1d0) soTouspuadagansTosar proa or11qnd

{

! (deop)ppe-sdep* ((I29bH6TI])39hH 2103s (soT1i2doadr=alrsThbaypoyisw 1d0))

! (doad ‘3sbae3)edouspusdeg Mau = dsp sduspuadsq
{
{(bsaw ‘3sbael)and-sx03s
!()seTt3a2doadgrelsTthaygpoylsy 1d0 Mau = Daiu
}
(TTnu == o) 3T
! (39bae])39b 21038 = ©
{
! (boxzw ‘z0bHTI])and- oI103S
/Toqunu-19b6TI3 = IToqunu-baiu//
!()soT3I19doadI93STHOYPOYISW 1d0 MduU = bHoaiu
}
(TTnu == o) 3T
! (z9bbTI3)38b" 2103 = 0 308lqO
!boau soT3a9doagrslsTboypoylisw 140
}

(Axzeuwns Axeumngadedsy 1dO

oxd jur ‘38bae]l I91STDhOY 140 ‘a9H6DHTa3 I93STHoy 1d0)oouspusadsgiss proa oTTqnd

{
{(sty3z ‘doxd ‘ze] ‘HTa3)sdouspuadagilss

}

(doxd ut ‘xe3 x93sTDOY 140 ‘PTa3 I93sThay 1d0)oouspuadsgiss proa oT1Tqnd

{

}
(dooT uparTooq ‘a®1sTbox a931sTbay 140)dooTass proa oTTqnd

{
}

(pedeoss upaToOqg ‘I23sThbax I93sTbay 1d0)padedosgisas proa oTTqnd

{
}

(yseaz upsrooq ‘Io3sthor 1931sTboy 1d40)ysaijgirss proa orrand

{

! (dooT ‘dooT-seT3aedoadaolsTboypoylrswW 1d0 ‘ae93stbex)Ajazsdoagiss

‘QadvOsd - soT319doa1gaolsThbaygpoyls 1d0 ‘Ie3sTbax)Arxsdoigass

! (ysoxy ‘HSHAYMIsoT31I2d0oIdaslsTbhbaygpoylrswW 140 ‘asastbsx)Aiazsdoxgiss

‘d

{

}
(I- =i 1) 37T
NAMGUMHmmHvuwumEmummmHuﬂu:ﬂ

fonTea = [doad]sdoad- [T]doxduaed

}
(enTea upaTooq ‘doxd jur ‘x93sTbax 193sTHay 1d0)A3xadoxgiss proa or1qnd
{
!T- uanjsx
{
{
{

}

((xz93stbox)sTenbe 1o3s1tbox" () I93sthbayse  [T]saislsweaed) 3IFT

{T uanzsx

(()x93sTboyst  [T]saslaweaed) MW
(++T fyabustr-sasjzsweaed > T {0 = T 3UT) How
(193sTbox 193sTbhoy 1d0) I932weredst JUT wum>ﬂuw
. {

}
(++C fyabust-doadwzed > [ ‘g = [C Jur) zOZ
![T]saT3aadoagaelsThoypoylis 140 mau = doadwaed

! ()set3aaodoagaslsThHbay¥poyls 140 mau = [[]doxduaed

}

(T 3uT)sI9laweaedlas proa oTTqnd

!{doxdwaed []saT3asdoxgraistbaypoylisw 140 oTTand
!sazsyswered []pueasdo 140 oTTdnd
{0 = smau qur oTTqnd
losTey = DuTIOM UPSTOOQ
‘osTey = ysaial ueparooq oTTqnd
{()dewysey Mmau = =2103s depyseyg orTqnd

}

Aewwngadeosy 1O sseT2 oT1qnd

/*

$ P°T UOTSTADYS UOTSIDAP

*
¢ dxg pobexlp zG:,Z:ZT §Z/50/£00Z #'T

! (pauanisr ‘QININIAY " soT3I2doIgIolsThaygpoylsw 140 ‘Ie3istbex)Lyxsdoagiss A ‘eael - Azeummgodeosqg 140/ 3d0/WANSSYTL /WUQT /WOD /HAHO PO\ SOATL/SAD/TRA/ :ISPBSHS x
} *
(pauanisx ueaTo0q ‘I93sTboI I93STHOY 1d40)psuinisygiss proa orrqnd ¢ pobaxdAp :zoyanyg :Aq sbueyo 3seT
{ *
! (193sTbox) soTouspuadegarTosal poyjsw ® UT SI93STHSI TT® UO OFUT SUTRIUOD
{ xx/
‘onTea = [doad]sdoad-baaw {4 IT3do WAMSOYTL "wAT "wod 3xodwTt
{
{0 (seT3asdoxgrslsThoypoylsW 1d40) = baaur {103e19731° TTIn"eael jxodwt
} !depysey - 7Tan eael jxodwt
osT®
{ 13do " WAYSSY TP wqT "wod abeyoed
! (bsxw ‘xe3sTboax)and-rax03s /x
! ()seT319doIgIo3STHOYPOYIS 140 MU = bHaiw x
} ‘uIn3lex uTr I99q B sn Anq ued nodk 4
(rrnu == o) 3T ‘3T y3zTom ST JFn3s STY3 YuTry3 nok pue ‘Aep swos 399w oM JI "JFN3IS STYF YITM x
! (z93sThox) 38b 21038 = 0 2308lqO juem nofk zseasjzeym op ued nok 80T3O0U STY3 UTP3SI nok se BUuoT sy "OTTF STYI x
!paaw soT3a9doIdIiolsTHOUPOYISHW 14O 830am <yp-onzyzlul> <jyp-onzdybory3z> <yp yenbueppspews> <yp pobsilppiozyop> x
:(Zp UOTSTA®Y) ,HASNADIT FYVM-YFAL HHIL. *
} *
asT® *x/
g/z abed eAel'frewwingadessy 14O g/1 obed eael frewwingadessy 140




78

9/G eAel-aseqeleghrewiwingadessy™ | JOAJO/NAYSMIM/WQL/WOo ‘eAel Arewwngadedsy | JOAdO/INAYSONIM/WAl/WOD

{Azeuins uanilax
! (Azeuwns ‘poy3lsw) 1nd-sseqelep
() Azeuungadeosy 140 mau = Azeuums Axewungadedsy 140

}
(poyasw poylsW WA) Azeuwngadeosgsiesid Arxeumngadeosy 140 ©T3e3s oT1Tqnd

{
! (poyalsu) 39b-oseqejep (Axeuwngsdedsd 1d0) uInlax
}
(poy3zaw poylsW WA) Axeuumgsadeosygish Axeuumngsadedsy 140 ©T3els oTrqnd

{
f({} [1&xeu
wngadeosy 140 Mdu) Aexayol- () senTea‘sseqejep ([]Azewwnssdedosy [d40) uaniax
}
() TTY39b []Azeumngsdedosy 140 D9T3e3s orrqnd
! ()dewyseH mau = oseqelep deUseH DT3e3s
}
aseqejegAiewwingadeosy |0 sseTo oT1and

/*

$ Z'T ‘UOTSTASYS UOTSIDAP

P
¢ dxg pobexdp zG:,Z:2T §Z/S0/€00Z Z'T 4‘eael-
oseqejegireuunsadeosy 1d0/3d0/NAYSOYTL/W]T /WOD /WANO PO\ SOYTL/SAD/IRA/ ISPRIHS x

¢ pobaxAp :zoyjnvg :Aq sbueyo 3seq

* k

saTIPUMINS pOoYyjzswW TT® SUTBIUOD x

xx/
{POYIBW WA ISPROTSSBTO "WAMSSNTL "uqT "wod Jxodut

!doxd = doad-sty3a
{193sThex = 193STbaI"STYT
}
(doxd ur ‘ze3sTbex I93sTbHay 140)°ouspuadsqg oTTgnd
!doad qur
!{193sTbhoa 193sTHOY 140
}
@ouapuadag sseTo
{
{

}

(m upsTOOQq) butrsaomiss proa oTTand

{
}

() butsaomst upearTooq oTTqnd
{

im = putryaom

/puTyIOM UINIDI

{
! [HSEYA seT3aedo
Idae31sTtbhoygpoylsy 1d0]sdoad: (o (seT3aadoirgIaisTbhoypoylisW 1d40)) uaniax
}
osT®
{

}

(TThu == o) 3T

! (z93sTbox)39b 21038 = 0 2308Lq0

! ()soT1339d0oIdI191STHOYPOYISW 140 MU = DHoJw soT1319d0IdI221STHOYPOYISHW 14O

{osTePI uanjax

}
(z93sTbox x93sThOY 1d0)Yysaailiab uearooq oTTand
{

{

‘fonzy [doad-juswaTa] sdoad- baawy
!depyseqg- T1an eael jxzodut ([doxd-quswsTa]sdoad-baaws) 3FT
{2do "WA¥SSY T wqT "wod abeyoed ! (193stbax-quswaTa) 38b-2107]S
/x (seT1x9doagao3sThHhaygpoylsW 1d0) = bsawl saT3zasdoagriaisTbaygpoylisw 1d0
M {()31xsu-193T (eouspuads(q) = JuswsTe souspusadsqg
‘uIn3lax uT I99q ' sn Anq ued nod }
‘3T y3zTom ST JFn3s STY3 YUuTy3 nok pue ‘Aep swos 398w om JI "JFN3IS STYIF YITM x (() IXeNSey Ie3T) STTUM
juem nodk zsasjzeym op ued nok 80Tj30U STY3 UTP3SI nok se BUOT Sy "STTF STYI x !{()zo3exe]3T - sdep-baIws = I93T I03RISIT
@30xM <yp onzpalulz> <yp - onzyybory3z> <jp yenbueppspew> <yp poboidAppiolzyop> x ! (193sThox) 39b 2103s (soT3ra19doIdiolsTOaYPOYISN 1dO)
:(Zp UOTSTA®Y) ,ASNADIT FYYM-Y¥IAT FHI. « baaws
M asT®
xx/ ![1]doaduaed = Hsaus

1/} obed

enel-aseqejegMiewwingadedssy 140

¢/c abed eael frewwingadessy 140




79

9/9

eAelseiadoidiaisibadpoulsiN - 1L dOAdO/INAHSENIN/WQl/WOoD

{()3sSTIPeNUTT Mdu = sdep 3sSTTIpeyuTT 2TTqnd
![ylueaTooq mau = sdoad [Juparooq oTTqnd
{¢ = doOT IUT Teur3y o9T3e3s orTqnd
{7 = qENMNIAY FUT Teut3y dor3els orrqnd
{1 = Qddydsd ur TeutF oT3e3s oriqnd
{0 = HSHEY4 JUT Teuty OT3e3s OTTqnd
wIroy pss uo pesoddns T 9podo sk 0 2q 03 jybno //
}
saiadoidiaisiboypoyldy 1dO sse1o ot1and
/*

¢ Z'T UOTSTA®YS UOTSIBAP

x
¢ dxm poboilp zG:LZ:ZT §Z/50/€00Z Z'T 4‘eaeL soT
3aadoxgrolzsTboaypoy3Isw 1do/3do/HAYSSATL /WUQT /WOD /HANOF 0\ SOYTL/SAD/IeA/ :ISPBSHS x
*
¢ pobazdp :zoyjnyg :Aq sbueyo 3seT
*
poyizsw yoes zoy sorizxadoxd surejzuo) x

xx/

{3sTTPeYUTT TTIn eael 3xodwr

13do " WAYSSY TP wqT "wod abeyoed
/*

*
‘uInisI ur I99q ® sn Anqg ued nok
‘3T y3zTom ST JFn3s STY3 YuTry3 nok pue ‘Aep swos 399w oM JI "JFN3IS STYF YITM x
juem nofk zsasjzeym op ued nok 8OT3OU STY3 UTP3SI nok se BUoT sy "STTF STYI x
930xM <3yp - onxpalul> <3jp onzpyboxylz> <3jp yenbuepgspeuws <yp pobszApprozyop>
:(Zp UOTSTA®Y) ,ASNIDIT HYVM-YFHAL HHL. «
x

xx/

1/1 obed eAel'sainadoudialsibaypoylsn Ldo




O 0 N o LW N =

P T T S S
N = & © ® 9N o ¢« & W N = O

Appendix B

Test

The class used for testing contains a number of methods, each used for a specific
method, which again is executed

test. The test itself is executed from the

test()

from the main() method of the test-class.

Listing B.1: The class used for testing

public class Test3

{
Object i;
static Object o;
public static void main(String[] args)
{
Test3 t = new Test3();
t.test();
}
public void test()
{
assignStatic();
Object b = fresh();
assignField();
methodCall();
recursiveCall();
phi(4);
}
(Test methods here)
}

The following sections contains the source code for each test methods (including
main() andtest() . Lines of code from the above will be includes as needed, to

increase readability.

80




N L AW -

AW N =

a v~ W

B.1 assignStatic 81

B.1 assignStatic

Java-code

static Object o;

public void assignStatic()

{
Object t = new Object();
0=t

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue I0si(LTest3;,x,d) =

0 G vyieldpoint_prologue

0 EG new t2si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>,

t2si(Ljava/lang/Object;,p)

9 putstatic t2si(Ljava/lang/Object;,p), 64904, <mem
loc: LTest3;.0>

-3 return <unused>

-1 bbend BBO (ENTRY)

Analysis-result

var:
t2si: returned = false, fresh = true, escaped = true, loop =
false
parameters:
Method is fresh? false
Total new: 1
Total stackable: 0




AW N R

AW N

o W

82

B.2 fresh

Java-code

public Object fresh()
{

}

return new Object();

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue [0si(LTest3;,x,d) =

0 G yieldpoint_prologue

0 EG new t3si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>, t3si(Ljava/lang/
Object;,p)

-3 return t3si(Ljava/lang/Object;)

-1 bbend BBO (ENTRY)

Analysis-result

var:
t3si: returned = true, fresh = true, escaped = false, loop =
false
parameters:
Method is fresh? true
Total new: 1
Total stackable: 0




N L AW -

AW N =

a v~ W

B.3 assignField 83

B.3 assignField

Java-code

Object i;

public void assignField()

{
Object t = new Object();
i =t

}

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue I0si(LTest3;,x,d) =

0 G vyieldpoint_prologue

0 EG new t2si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>, t2si(Ljava/lang/
Object;,p)

10 putfield t2si(Ljava/lang/Object;,p), 10si(LTest3;,
x,d), -16, <mem loc: LTest3;.i>, <TRUEGUARD>

-3 return <unused>

-1 bbend BBO (ENTRY)

Analysis-result

var:
t2si: returned = false, fresh = true, escaped = true, loop =
false
parameters:
Method is fresh? false
Total new: 1
Total stackable: 0




N o L AW N =

84

B.4 method

Java-code

static Object o;

public Object method(Object a, Object b)
{

0 = a
return b;

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue I0si(LTest3;,x,d), 12si(Ljava/lang/Object
;»x,d), I3si(Ljava/lang/Object;,x,d) =

0 G yieldpoint_prologue

1 putstatic I2si(Ljava/lang/Object;,x,d), 64904, <mem
loc: LTest3;.0>

-3 return I3si(Ljava/lang/Object;)

-1 bbend BBO (ENTRY)

Analysis-result

var:
parameters:

[Lcom.ibm.JikesRVM.opt.ir. OPT_Operand;@c8: returned
fresh = false, escaped = true, loop = false
[Lcom.ibm.JikesRVM.opt.ir.OPT_Operand;@c8: returned = true, fresh

= false, escaped = false, loop = false
Method is fresh? false
Total new: 0
Total stackable: 0

false,




A s W N =

AW N R

10
11

o O N O

B.5 methodcCall

85

B.5 methodCall

Java-code

public void methodCall()

{
Object a = new Object();
Object b = new Object();
method(a, b);

}

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue I0si(LTest3;,x,d) =

0 G vyieldpoint_prologue

0 EG new t2si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>, t2si(Ljava/lang/
Object;,p)

8 EG new tési(Ljava/lang/Object;,p) = java.lang.
Object

12 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>, t6si(Ljava/lang/
Object;,p)

19 EG call t10si(Ljava/lang/Object;) AF CF OF PF SF

ZF = 80, virtual"Test3.method (Ljava/lang/Object;Ljava/lang/
Object;)Ljava/lang/Object;",

<TRUEGUARD>, 10si(LTest3;,x,d), t2si(Ljava/lang/Object;,p), t6si(
Ljava/lang/Obiject;,p)

-3 return <unused>

-1 bbend BBO (ENTRY)

Analysis-result

var:

t6si: returned
false

t2si: returned
false

I0si: returned
false

t10si: returned = false, fresh = false, escaped = false, loop =
false

parameters:

Method is fresh? false

Total new: 2

Total stackable: 2

false, fresh = true, escaped = false, loop

false, fresh = true, escaped = false, loop

false, escaped = true, loop

false, fresh




AW N R

86

B.6 recursive

Java-code

public Object recursive(Object a)

{
}

return recursiveCall();

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue [0si(LTest3;,x,d), 12si(Ljava/lang/Object
wxd) =

0 G yieldpoint_prologue

1 EG call t4si(Ljava/lang/Object;) AF CF OF PF SF
ZF = 84, virtual"Test3.recursiveCall ()Ljava/lang/Object;", <
TRUEGUARD>, I0si(LTest3;,x,d)

-3 return t4si(Ljava/lang/Object;)

-1 bbend BBO (ENTRY)

Analysis-result

var:
t4si: returned = true, fresh = false, escaped = false, loop =
false
parameters:
[Lcom.ibm.JikesRVM.opt.ir.OPT_Operand;@ef: returned = false,
fresh = false, escaped = false, loop = false
Method is fresh? false
Total new: 0
Total stackable: 0




13 N N I

AW N e

N o v b

B.7 recursiveCall

87

B.7 recursiveCall

Java-code

public Object recursiveCall()

{
Object a = new Object();
return recursive(a);

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue I0si(LTest3;,x,d) =

0 G yieldpoint_prologue

0 EG new t3si(Ljava/lang/Object;,p) = java.lang.
Object

4 EG call AF CF OF PF SF ZF = 696, special_exact"
java.lang.Object.<init> ()V", <TRUEGUARD>,

t3si(Ljava/lang/Object;,p)

10 EG call t7si(Ljava/lang/Object;) AF CF OF PF SF
ZF = 88, virtual"Test3.recursive (Ljava/lang/Object;)Ljava/
lang/Object;", <TRUEGUARD>, 10si(LTest3;,x,d), t3si(Ljava/lang
/Object;,p)

-3 return t7si(Ljava/lang/Object;)

-1 bbend BBO (ENTRY)

Analysis-result

var:
t3si: returned = false, fresh = true, escaped = false, loop =
false
t7si: returned = true, fresh = false, escaped = false, loop =
false
parameters:

Method is fresh? false
Total new: 1
Total stackable: 1




-
AW = © 0 O N N U A~ W N =

o N o«

11
12
13
14
15
16

88

B.8 phi
Java-code
public int phi(int i)
{
int x = 0;
if (i < 4)
i =i *5;
else
=1/ 4
X =i
return Xx;
}
HIR-code
-13 LABELO Frequency: 1.0
-2 EG ir_prologue [0si(LTest3;,x,d), tépsi(l,d) =
0 G yieldpoint_prologue
4 int_ifcmp t5sv(GUARD) = t6psi(l,d), 4, >=, LABELZ2,
Probability: 0.5
-1 bbend BBO (ENTRY)
7 LABEL1 Frequency: 0.5
9 int_mul t8psi(l) = t6psi(l,d), 5
11 goto LABEL3
-1 bbend BB1
14 LABEL2 Frequency: 0.5
16 int_div t9psi(l) = t6psi(l,d), 4, <TRUEGUARD>
-1 bbend BB2
18 LABEL3 Frequency: 1.0
-9 phi t10psi(l) = t8psi(l), BB1, t9psi(l), BB2
-3 return t10psi(l)
-1 bbend BB3

Analysis-result

var:
t10psi: returned = true, fresh = false, escaped = false, loop
= false
t9psi: returned = true, fresh = false, escaped = false, loop
= true
t8psi: returned = true, fresh = false, escaped = false, loop
= true
parameters:

[Lcom.ibm.JikesRVM.opt.ir.OPT_Operand;@122: returned = false,
fresh = false, escaped = false, loop = false
Method is fresh? false
Total new: 0
Total stackable: 0




vV ® N AW N R

AW N

10

11
12

13
14

15
16
17

N U A~ W

B.9 test 89

B.9 test

Java-code

public void test()

{
assignStatic();
Object b = fresh();
assignField();
methodCall();
recursiveCall();

phi(4);

HIR-code

-13 LABELO Frequency: 1.0

-2 EG ir_prologue |0si(LTest3;,x,d) =

0 G vyieldpoint_prologue

1 EG call AF CF OF PF SF ZF = 64, virtual'Test3.
assignStatic ()V", <TRUEGUARD>,

[0si(LTest3;,x,d)

5 EG call I3si(Ljava/lang/Object;) AF CF OF PF SF
ZF = 68, virtual"Test3.fresh ()Ljava/lang/Object;",

<TRUEGUARD>, I0si(LTest3;,x,d)

10 EG call AF CF OF PF SF ZF = 72, virtual'Test3.
assignField ()V", <TRUEGUARD>,

[0si(LTest3;,x,d)

14 EG call AF CF OF PF SF ZF = 76, virtual"Test3.
methodCall ()V", <TRUEGUARD>,

[0si(LTest3;,x,d)

18 EG call t4si(Ljava/lang/Object;) AF CF OF PF SF
ZF = 84, virtual"Test3.recursiveCall ()Ljava/lang/Object;",

<TRUEGUARD>, 10si(LTest3;,x,d)

24 EG call tosi(l) AF CF OF PF SF ZF = 92, virtual"
Test3.phi ()",

<TRUEGUARD>, I0si(LTest3;,x,d), 4

-3 return <unused>

-1 bbend BBO (ENTRY)

Analysis-result

var:
I3si: returned = false, fresh = true, escaped = false, loop =
false
parameters:
Method is fresh? false
Total new: 0
Total stackable: 1




uoA W N e

(3 N O

N U~ W

90

B.10 main

Java-code
public static void main(String[] args)
{
Test3 t = new Test3();
t.test();
}
HIR-code
-13 LABELO Frequency: 1.0
-2 EG ir_prologue [0si([Ljava/lang/String;,d) =
0 G yieldpoint_prologue
0 EG new tlsi(LTest3;,p) = Test3
4 EG call AF CF OF PF SF ZF = 64912, special_exact

"Test3.<init> ()V", <TRUEGUARD>,
t1si(LTest3;,p)
9 EG call AF CF OF PF SF ZF = 60, virtual"Test3.
test )V, <TRUEGUARD>,
tlsi(LTest3;,p)
-3 return <unused>
-1 bbend BBO (ENTRY)

Analysis-result

var:
tlsi: returned = false, fresh = true, escaped = false, loop =
false
parameters:
Method is fresh? false
Total new: 1
Total stackable: 1




	Abstract
	I Introduction
	Foreword
	Readers Guide

	Introduction

	II Analysis
	Introduction to Abstract Interpretation
	The concrete and abstract domains
	The representation and abstraction functions
	Soundness of the analysis
	Interpreting the abstract program
	Least upper bound of abstract values
	Using the results

	Escape Analysis
	Introduction to Escape Analysis
	Escaping a method
	Escaping through assignment
	Escaping as a parameter
	Escaping as a return-value

	Escaping a thread
	Applying the analysis results
	Local variables
	Return values
	Synchronization elimination


	Static Single Assignment Form
	Algorithms for Escape Analysis
	Previous Work
	Refinements to Escape Analysis
	Freshness
	The Abstract Domain
	Constraints
	Results

	Introduction to the Jikes RVM
	The Jikes Research Virtual Machine (RVM)
	The Compiler Subsystem
	The Optimizing Compiler
	The Baseline Compiler
	The Adaptive Optimization System


	Intermediate Representation of Code
	Intermediate Representation
	Instruction Format
	Step by Step example

	Construction of the Intermediate Representation
	Control Flow Graph and Basic Blocks
	Factored Control Flow Graph and Extended Basic Blocks
	From Bytecode to Intermediate Representation

	Noteworthy Instructions

	Runtime data-organisation in Jikes
	The Object Model
	The Memory Model
	The Stack
	The Heap
	Heap Allocation
	Object Creation
	Heap Deallocation (Garbage Collection)



	III Implementation
	Implementation of the escape analysis
	Overview of the Implementation
	Algorithm Implementation Details
	Effect Statements
	Modelling Constraints
	Inter-Procedural Analysis

	Fitting it All Into Jikes

	Explicit Deallocation of Method-local Objects
	Stack Allocation of Method Local Objects
	Allocation of Object in a Object Stack

	Implementation


	IV Results
	Analysis Results
	Testing the Jikes RVM
	Examining the Escape Analysis
	Assignment to a Static Field
	Returning a fresh object
	Assignment of an Object to a Non-static Field
	Objects Passed as Argument
	Recursive Calls
	Multiple program paths

	Examining Real Programs
	VolanoMark
	Scimark



	V Discussion
	Discussion
	Conclusion
	Related and Future Work

	VI Lists and Citations
	Credits
	Citations
	Additional Litterature

	VII Appendix
	Source-code for Escape Analysis
	Test
	assignStatic
	fresh
	assignField
	method
	methodCall
	recursive
	recursiveCall
	phi
	test
	main



